3,280 research outputs found
Phase ambiguity of the threshold amplitude in pp -> pp\pi^0
Measurements of spin observables in pp -> {\vec p}{\vec p}\pi^0 are suggested
to remove the phase ambiguity of the threshold amplitude. The suggested
measurements complement the IUCF data on {\vec p}{\vec p} -> pp\pi^0 to
completely determine all the twelve partial wave amplitudes, taken into
consideration by Mayer et.al. [15] and Deepak, Haidenbauer and Hanhart [20].Comment: 4 pages, 1 table
Comparative study of osteogenic activity of multilayers made of synthetic and biogenic polyelectrolytes
Polyelectrolyte multilayer (PEM) coatings on biomaterials are applied to tailor adhesion, growth, and function of cells on biomedical implants. Here, biogenic and synthetic polyelectrolytes (PEL) are used for layer-by-layer assembly to study the osteogenic activity of PEM with human osteosarcoma MG-63 cells in a comparative manner. Formation of PEM is achieved with biogenic PEL fibrinogen (FBG) and poly-l-lysine (PLL) as well as biotinylated chondroitin sulfate (BCS) and avidin (AVI), while poly(allylamine hydrochloride) (PAH) and polystyrene sulfonate (PSS) represent a fully synthetic PEM used as a reference system here. Surface plasmon resonance measurements show highest layer mass for FBG/PLL and similar for PSS/PAH and BCS/AVI systems, while water contact angle and zeta potential measurements indicate larger differences for PSS/PAH and FBG/PLL but not for BCS/AVI multilayers. All PEM systems support cell adhesion and growth and promote osteogenic differentiation as well. However, FBG/PLL layers are superior regarding MG-63 cell adhesion during short-term culture, while the BCS/AVI system increases alkaline phosphatase activity in long-term culture. Particularly, a multilayer system based on affinity interaction like BCS/AVI may be useful for controlled presentation of biotinylated growth factors to promote growth and differentiation of cells for biomedical applications
Single photo-electron trapping, storage, and detection in a one-electron quantum dot
There has been considerable progress in electro-statically emptying, and
re-filling, quantum dots with individual electrons. Typically the quantum dot
is defined by electrostatic gates on a GaAs/AlGaAs modulation doped
heterostructure. We report the filling of such a quantum dot by a single
photo-electron, originating from an individual photon. The electrostatic dot
can be emptied and reset in a controlled fashion before the arrival of each
photon. The trapped photo-electron is detected by a point contact transistor
integrated adjacent to the electrostatic potential trap. Each stored
photo-electron causes a persistent negative step in the transistor channel
current. Such a controllable, benign, single photo-electron detector could
allow for information transfer between flying photon qubits and stored electron
qubits.Comment: 4 Pages, 5 Figure
Surface flow profiles for dry and wet granular materials by Particle Tracking Velocimetry; the effect of wall roughness
Two-dimensional Particle Tracking Velocimetry (PTV) is a promising technique
to study the behaviour of granular flows. The aim is to experimentally
determine the free surface width and position of the shear band from the
velocity profile to validate simulations in a split-bottom shear cell geometry.
The position and velocities of scattered tracer particles are tracked as they
move with the bulk flow by analyzing images. We then use a new technique to
extract the continuum velocity field, applying coarse-graining with the
postprocessing toolbox MercuryCG on the discrete experimental PTV data. For
intermediate filling heights, the dependence of the shear (or angular) velocity
on the radial coordinate at the free surface is well fitted by an error
function. From the error function, we get the width and the centre position of
the shear band. We investigate the dependence of these shear band properties on
filling height and rotation frequencies of the shear cell for dry glass beads
for rough and smooth wall surfaces. For rough surfaces, the data agrees with
the existing experimental results and theoretical scaling predictions. For
smooth surfaces, particle-wall slippage is significant and the data deviates
from the predictions. We further study the effect of cohesion on the shear band
properties by using small amount of silicon oil and glycerol as interstitial
liquids with the glass beads. While silicon oil does not lead to big changes,
glycerol changes the shear band properties considerably. The shear band gets
wider and is situated further inward with increasing liquid saturation, due to
the correspondingly increasing trend of particles to stick together
Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein
BACKGROUND: The ORF1 of hepatitis E virus (HEV) encodes a nonstructural polyprotein of ~186 kDa that has putative domains for four enzymes: a methyltransferase, a papain-like cysteine protease, a RNA helicase and a RNA dependent RNA polymerase. In the absence of a culture system for HEV, the ORF1 expressed using bacterial and mammalian expression systems has shown an ~186 kDa protein, but no processing of the polyprotein has been observed. Based on these observations, it was proposed that the ORF1 polyprotein does not undergo processing into functional units. We have studied ORF1 polyprotein expression and processing through a baculovirus expression vector system because of the high level expression and post-translational modification abilities of this system. RESULTS: The baculovirus expressed ORF1 polyprotein was processed into smaller fragments that could be detected using antibodies directed against tags engineered at both ends. Processing of this ~192 kDa tagged ORF1 polyprotein and accumulation of lower molecular weight species took place in a time-dependent manner. This processing was inhibited by E-64d, a cell-permeable cysteine protease inhibitor. MALDI-TOF analysis of a 35 kDa processed fragment revealed 9 peptide sequences that matched the HEV methyltransferase (MeT), the first putative domain of the ORF1 polyprotein. Antibodies to the MeT region also revealed an ORF1 processing pattern identical to that observed for the N-terminal tag. CONCLUSION: When expressed through baculovirus, the ORF1 polyprotein of HEV was processed into smaller proteins that correlated with their proposed functional domains. Though the involvement of non-cysteine protease(s) could not be be ruled out, this processing mainly depended upon a cysteine protease
- …