436 research outputs found
An Artificial SEI Layer Based on an Inorganic Coordination Polymer with Self-Healing Ability for Long-Lived Rechargeable Lithium-Metal Batteries
Upon immersion of a lithium (Li) anode into a diluted 0.05 to 0.20 M dimethoxyethane solution of the phosphoric-acid derivative (CFCHO)P(O)OH (HBFEP), an artificial solid-electrolyte interphase (SEI) is generated on the Li-metal surface. Hence, HBFEP reacts on the surface to the corresponding Li salt (LiBFEP), which is a Li-ion conducting inorganic coordination polymer. This film exhibits – due to the reversibly breaking ionic bonds – self-healing ability upon cycling-induced volume expansion of Li. The presence of LiBFEP as the major component in the artificial SEI is proven by ATR-IR and XPS measurements. SEM characterization of HBFEP-treated Li samples reveals porous layers on top of the Li surface with at least 3 μm thickness. Li−Li symmetrical cells with HBFEP-modified Li electrodes show a three- to almost fourfold cycle-lifetime increase at 0.1 mA cm in a demanding model electrolyte that facilitates fast battery failure (1 M LiOTf in TEGDME). Hence, the LiBFEP-enriched layer apparently acts as a Li-ion conducting protection barrier between Li and the electrolyte, enhancing the rechargeability of Li electrodes
On the Navier-Stokes equations with rotating effect and prescribed outflow velocity
We consider the equations of Navier-Stokes modeling viscous fluid flow past a
moving or rotating obstacle in subject to a prescribed velocity
condition at infinity. In contrast to previously known results, where the
prescribed velocity vector is assumed to be parallel to the axis of rotation,
in this paper we are interested in a general outflow velocity. In order to use
-techniques we introduce a new coordinate system, in which we obtain a
non-autonomous partial differential equation with an unbounded drift term. We
prove that the linearized problem in is solved by an evolution
system on for . For this we use
results about time-dependent Ornstein-Uhlenbeck operators. Finally, we prove,
for and initial data , the
existence of a unique mild solution to the full Navier-Stokes system.Comment: 18 pages, to appear in J. Math. Fluid Mech. (published online first
Direct measurements of the energy flux due to chemical reactions at the surface of a silicon sample interacting with a SF6 plasma
Energy exchanges due to chemical reactions between a silicon surface and a
SF6 plasma were directly measured using a heat flux microsensor (HFM). The
energy flux evolution was compared with those obtained when only few reactions
occur at the surface to show the part of chemical reactions. At 800 W, the
measured energy flux due to chemical reactions is estimated at about 7
W.cm\^{-2} against 0.4 W.cm\^{-2} for ion bombardment and other contributions.
Time evolution of the HFM signal is also studied. The molar enthalpy of the
reaction giving SiF4 molecules was evaluated and is consistent with values
given in literature.Comment: 3 page
Internal states of model isotropic granular packings. III. Elastic properties
In this third and final paper of a series, elastic properties of numerically
simulated isotropic packings of spherical beads assembled by different
procedures and subjected to a varying confining pressure P are investigated. In
addition P, which determines the stiffness of contacts by Hertz's law, elastic
moduli are chiefly sensitive to the coordination number, the possible values of
which are not necessarily correlated with the density. Comparisons of numerical
and experimental results for glass beads in the 10kPa-10MPa range reveal
similar differences between dry samples compacted by vibrations and lubricated
packings. The greater stiffness of the latter, in spite of their lower density,
can hence be attributed to a larger coordination number. Voigt and Reuss bounds
bracket bulk modulus B accurately, but simple estimation schemes fail for shear
modulus G, especially in poorly coordinated configurations under low P.
Tenuous, fragile networks respond differently to changes in load direction, as
compared to load intensity. The shear modulus, in poorly coordinated packings,
tends to vary proportionally to the degree of force indeterminacy per unit
volume. The elastic range extends to small strain intervals, in agreement with
experimental observations. The origins of nonelastic response are discussed. We
conclude that elastic moduli provide access to mechanically important
information about coordination numbers, which escape direct measurement
techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page
Driving the atom by atomic fluorescence: analytic results for the power and noise spectra
We study how the spectral properties of resonance fluorescence propagate
through a two-atom system. Within the weak-driving-field approximation we find
that, as we go from one atom to the next, the power spectrum exhibits both
sub-natural linewidth narrowing and large asymmetries while the spectrum of
squeezing narrows but remains otherwise unchanged. Analytical results for the
observed spectral features of the fluorescence are provided and their origin is
thoroughly discussed.Comment: 13 pages, 5 figures; to be published in Phys. Rev. A Changed title
and conten
Fast fluorescence microscopy for imaging the dynamics of embryonic development
Live imaging has gained a pivotal role in developmental biology since it increasingly allows real-time observation of cell behavior in intact organisms. Microscopes that can capture the dynamics of ever-faster biological events, fluorescent markers optimal for in vivo imaging, and, finally, adapted reconstruction and analysis programs to complete data flow all contribute to this success. Focusing on temporal resolution, we discuss how fast imaging can be achieved with minimal prejudice to spatial resolution, photon count, or to reliably and automatically analyze images. In particular, we show how integrated approaches to imaging that combine bright fluorescent probes, fast microscopes, and custom post-processing techniques can address the kinetics of biological systems at multiple scales. Finally, we discuss remaining challenges and opportunities for further advances in this field
On the pion-nucleon coupling constant
In view of persisting misunderstanding about the determination of the
pion-nucleon coupling constants in the Nijmegen multienergy partial-wave
analyses of pp, np, and pbar-p scattering data, we present additional
information which may clarify several points of discussion. We comment on
several recent papers addressing the issue of the pion-nucleon coupling
constant and criticizing the Nijmegen analyses.Comment: 19 pages, Nijmegen preprint THEF-NYM-92-0
CPT spectroscopy on low-temperature sealed MEMS rubidium vapour cells
In recent years there has been a strong effort to reduce the size and power consumption of vapour cell atomic clocks [1,2]. The progress in this direction is driven by several factors such as the use low power laser diodes (VCSEL), Coherent Population Trapping resonances (CPT), and micro-fabricated (MEMS) alkali-vapour cells. Here the micro-fabrication of vapour cells has proven a challenging task. All results reported on this task use anodic bonding at high-temperatures (>300°C) to seal the cell [3]. However, the low melting point and high vapour pressure of the alkali-metal combined with long bonding-times (>1hour) complicate this process. We have recently developed a low temperature (~150°C) sealing technique with fast process time (<1min) based on soldering [4]. We report here on the measurement of 85Rb σ+ CPT resonance in low temperature sealed MEMS-fabricated vapour cells containing natural rubidium and buffer gas. The resonance is recorded on the rubidium D1-line (795nm) using a circular polarized and current-modulated VCSEL. We record the resonance shift, linewidth and amplitude as function of several experimental parameters such as light intensity, cell-temperature, and buffer gas pressure- and mixture. In addition we perform noise measurements on the resonance signal to characterize the cell for clock-applications. Preliminary results show a contrast of 1.7% and linewidth of 900Hz for a 4mm long cell with 70mbar of nitrogen buffer gas. Finally we present and characterize two problems related to the application of 85Rb resonance in clock-applications. First, the low modulation frequency of the VCSEL (1.5GHz) leads to a strong asymmetry in the first order sideband spectrum due to the combined effect of AM- and FM modulation. Second, the buffer gas broadening of the absorption spectrum combined with the small separation between VCSEL carrier and sideband reduces the CPT contrast due to off-resonant absorption. We demonstrate that the impact of both these effects can be reduced by modulating the VCSEL at 3GHz and probing the CPT resonance with the carrier and first order sideband. We acknowledge support from the European Space Agency ESA (ESTEC contract number 20794/07/NL/GLC), the Conference Universitaire Suisse CUS (project CIMENT), the Swiss Space Office SSO, and SpectraTime SA (Neuchâtel, Switzerland)
Arabidopsis CULLIN3 Genes Regulate Primary Root Growth and Patterning by Ethylene-Dependent and -Independent Mechanisms
CULLIN3 (CUL3) together with BTB-domain proteins form a class of Cullin-RING ubiquitin ligases (called CRL3s) that control the rapid and selective degradation of important regulatory proteins in all eukaryotes. Here, we report that in the model plant Arabidopsis thaliana, CUL3 regulates plant growth and development, not only during embryogenesis but also at post-embryonic stages. First, we show that CUL3 modulates the emission of ethylene, a gaseous plant hormone that is an important growth regulator. A CUL3 hypomorphic mutant accumulates ACS5, the rate-limiting enzyme in ethylene biosynthesis and as a consequence exhibits a constitutive ethylene response. Second, we provide evidence that CUL3 regulates primary root growth by a novel ethylene-dependant pathway. In particular, we show that CUL3 knockdown inhibits primary root growth by reducing root meristem size and cell number. This phenotype is suppressed by ethylene-insensitive or resistant mutations. Finally, we identify a function of CUL3 in distal root patterning, by a mechanism that is independent of ethylene. Thus, our work highlights that CUL3 is essential for the normal division and organisation of the root stem cell niche and columella root cap cells
- …