2 research outputs found

    Entanglement Entropy of Random Fractional Quantum Hall Systems

    Full text link
    The entanglement entropy of the ν=1/3\nu = 1/3 and ν=5/2\nu = 5/2 quantum Hall states in the presence of short range random disorder has been calculated by direct diagonalization. A microscopic model of electron-electron interaction is used, electrons are confined to a single Landau level and interact with long range Coulomb interaction. For very weak disorder, the values of the topological entanglement entropy are roughly consistent with expected theoretical results. By considering a broader range of disorder strengths, the fluctuation in the entanglement entropy was studied in an effort to detect quantum phase transitions. In particular, there is a clear signature of a transition as a function of the disorder strength for the ν=5/2\nu = 5/2 state. Prospects for using the density matrix renormalization group to compute the entanglement entropy for larger system sizes are discussed.Comment: 29 pages, 16 figures; fixed figures and figure captions; revised fluctuation calculation

    Hierarchical structure in the orbital entanglement spectrum in Fractional Quantum Hall systems

    Full text link
    We investigate the non-universal part of the orbital entanglement spectrum (OES) of the nu = 1/3 fractional quantum Hall effect (FQH) ground-state with Coulomb interactions. The non-universal part of the spectrum is the part that is missing in the Laughlin model state OES whose level counting is completely determined by its topological order. We find that the OES levels of the Coulomb interaction ground-state are organized in a hierarchical structure that mimic the excitation-energy structure of the model pseudopotential Hamiltonian which has a Laughlin ground state. These structures can be accurately modeled using Jain's "composite fermion" quasihole-quasiparticle excitation wavefunctions. To emphasize the connection between the entanglement spectrum and the energy spectrum, we also consider the thermodynamical OES of the model pseudopotential Hamiltonian at finite temperature. The observed good match between the thermodynamical OES and the Coulomb OES suggests a relation between the entanglement gap and the true energy gap.Comment: 16 pages, 19 figure
    corecore