4 research outputs found

    PRE-ENGINEERED (PACKAGE/AND OR ON-SITE) WASTEWATER TREATMENT PLANTS

    Full text link
    Joint Research on Environmental Science and Technology for the Eart

    Expansion of KPC-producing Enterobacterales in four large hospitals in Hanoi, Vietnam

    Get PDF
    Objectives : The incidence of carbapenem resistance among nosocomial Gram-negative bacteria in Vietnam is high and increasing, including among Enterobacterales. In this study, we assessed the presence of one of the main carbapenemase genes, blaKPC, among carbapenem-resistant Enterobacterales (CRE) from four large hospitals in Hanoi, Vietnam, between 2010 and 2015, and described their key molecular characteristics. Methods : KPC-producing Enterobacterales were detected using conventional PCR and were further analysed using S1 nuclease pulsed-field gel electrophoresis (S1-PFGE), Southern blotting and whole-genome sequencing (WGS) for sequence typing and genetic characterisation. Results : blaKPC genes were detected in 122 (20.4%) of 599 CRE isolates. blaKPC-carrying plasmids were diverse in size. Klebsiella pneumoniae harbouring blaKPC genes belonged to ST15 and ST11, whereas KPC-producing Escherichia coli showed more diverse sequence types including ST3580, ST448, ST709 and ST405. Genotypic relationships supported the hypothesis of circulation of a population of ‘resident’ resistant bacteria in one hospital through the years and of transmission among these hospitals via patient transfer. WGS results revealed co-carriage of several other antimicrobial resistance genes and three different genetic contexts of blaKPC-2. Among these, the combination of ISEcp1–blaCTX-M and ISKpn27–blaKPC–ΔISKpn6 on the same plasmid is reported for the first time. Conclusion : We describe the dissemination of blaKPC-expressing Enterobacterales in four large hospitals in Hanoi, Vietnam, since 2010, which may have started earlier, along with their resistance patterns, sequence types, genotypic relationship, plasmid sizes and genetic context, thereby contributing to the overall picture of the antimicrobial resistance situation in Enterobacterales in Vietnam

    Evaluation of the Corrosion Inhibiting Capacity of Silica/Polypyrrole-Oxalate Nanocomposite in Epoxy Coatings

    No full text
    Silica/Polypyrrole nanocomposites (SiO2/PPy) incorporating oxalate as counter anion (SiO2/PPyOx) were chemically polymerized in the solution with the presence of pyrrole, silica, and sodium oxalate. Nanocomposites SiO2/PPyOx at different concentrations of oxalate anion were characterized with FTIR, XRD, EDX, TGA, and TEM. The corrosion protective properties for carbon steel of nanocomposites in epoxy coating were studied by electrochemical techniques including electrochemical impedance spectroscopy (EIS) and open circuit potential (OCP). FTIR results of nanocomposites show a slightly red-shift in terms of wavelength compared with the case of PPy and SiO2 spectra. It may be due to a better conjugation and interactions between PPy and SiO2 in nanocomposite structure. TEM image indicated that nanocomposites have spherical morphologies with diameters between 100 and 150 nm. The EIS results showed that |Z| modulus values of epoxy coatings containing SiO2/PPyOx composites reached about 109.7 Ω.cm2, always higher than that of epoxy coating. These results are also confirmed by OCP results. It proves that the presence of oxalate anion can enhance the resistance against corrosion and it has been shown that the content of counter anion strongly affects the anticorrosion ability

    Treatment of Cd2+ and Cu2+ Ions Using Modified Apatite Ore

    No full text
    Apatite ore from Lao Cai (Vietnam) has large reserves and low prices. Its main component is fluorapatite. The purification and modification of apatite ore can produce a material that can be used as an absorbent for heavy metals with high efficiency. The molecular structure, phase component, specific surface area, element component, and morphology of modified apatite ore from Lao Cai province, Vietnam, were characterized by IR, XRD, BET, EDX, and SEM methods. The IR and XRD results show that the modified process transformed apatite ore from fluorapatite to nanohydroxyapatite. The specific surface area of modified apatite ore (100.79 m2/g) is much higher than the original ore (3.97 m2/g). The modified apatite ore was used to adsorb Cd2+ and Cu2+ ions in water. The effect of adsorbent mass, pH, contact time, and initial concentration of Cd2+ and Cu2+ on the adsorption efficiency and capacity was investigated. Besides, the isotherm adsorption model was determined using Freundlich and Langmuir theories
    corecore