45 research outputs found
Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy
Introduction To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly. Material and Methods Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504). For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined Results The systematic (and random errors) in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0), 2.6(3.9) and 2.9(3.9) mm; for prostate bed, 1.7(2.0), 2.2(3.6) and 2.6(3.1) mm; for cervix, 2.8(3.4), 2.3(4.6) and 3.2(3.9) mm; for rectum, 1.6(3.1), 2.1(2.9) and 2.5(3.8) mm; for anal, 1.7(3.7), 2.1(5.1) and 2.5(4.8) mm; for head and neck, 1.9(2.3), 1.4(2.0) and 1.7(2.2) mm; for brain, 1.0(1.5), 1.1(1.4) and 1.0(1.1) mm; and for mediastinum, 3.3(4.6), 2.6(3.7) and 3.5(4.0) mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm) and the largest for mediastinum (11.5, 9.1 and 11.6mm). For pelvic treatments the means (and standard deviations) were 7.3 (1.6), 8.5 (0.8) and 9.6 (0.8) mm. Conclusions Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies
Hepatic expression patterns in psychosocially high-stressed pigs suggest mechanisms following allostatic principles
International audiencePsychosocial challenges are known to introduce cellular and humoral adaptations in various tissues and organs, including parts of the sympatho-adrenal-medullary system and hypothalamic-pituitary-adrenal axis as well as other peripheral tissue being responsive to cortisol and catecholamines. The liver is of particular interest given its vital roles in maintaining homeostasis and health as well as regulating nutrient utilization and overall metabolism. We aimed to evaluate whether and how response to psychosocial stress is reflected by physiological molecular pathways in liver tissue. A pig mixing experiment was conducted to induce psychosocial stress culminating in skin lesions which reflect the involvement in aggressive behavior and fighting. At 27 weeks of age, animals prone to psychosocially low- and high-stress were assigned to mixing groups. Skin lesions were counted before mixing and after slaughter on the carcass. Individual liver samples (n = 12) were taken. The isolated RNA was hybridized on Affymetrix GeneChip porcine Genome Arrays. Relative changes of mRNA abundances were estimated via variance analyses. Molecular routes related to tRNA charging, urea cycle, acute phase response, galactose utilization, and steroid receptor signaling were found to be increased in psychosocially high-stressed animals, whereas catecholamine degradation and cholesterol biosynthesis were found to be decreased. In particular, psychosocially high-stressed animals show decreased expression of catechol-O-methyltransferase (COMT) which has been linked to molecular mechanisms regulating aggressiveness and stress response. The expression patterns of high-stressed animals revealed metabolic alterations of key genes related to energy-mobilizing processes at the expense of energy consuming processes. Thus, the coping following psychosocial challenges involves transcriptional alterations in liver tissue which may be summarized with reference to the concept of allostasis, a strategy which is critical for survival
Pigs' aggressive temperament affects pre-slaughter mixing aggression, stress and meat quality
International audienc
Charakterisierung eines neuen Transmissionsdetektors für die patientenindividualisierte Online-Planverifikation und der Einfluss des Detektors auf die Strahlcharakteristik eines 6MV-Röntgentherapiestrahls
Purpose Online verification and 3D dose reconstruction on daily patient anatomy have the potential to improve treatment delivery, accuracy and safety. One possible implementation is to recalculate dose based on online fluence measurements with a transmission detector (TD) attached to the linac. This study provides a detailed analysis of the influence of a new TD on treatment beam characteristics. Methods The influence of the new TD on surface dose was evaluated by measurements with an Advanced Markus Chamber (Adv-MC) in the build-up region. Based on Monte Carlo simulations, correction factors were determined to scale down the over-response of the Adv-MC close to the surface. To analyze the effects beyond dmax percentage depth dose (PDD), lateral profiles and transmission measurements were performed. All measurements were carried out for various field sizes and different SSDs. Additionally, 5 IMRT-plans (head & neck, prostate, thorax) and 2 manually created test cases (3 × 3 cm2 fields with different dose levels, sweeping gap) were measured to investigate the influence of the TD on clinical treatment plans. To investigate the performance of the TD, dose linearity as well as dose rate dependency measurements were performed. Results With the TD inside the beam an increase in surface dose was observed depending on SSD and field size (maximum of +11%, SSD = 80 cm, field size = 30 × 30 cm2). Beyond dmax the influence of the TD on PDDs was below 1%. The measurements showed that the transmission factor depends slightly on the field size (0.893-0.921 for 5 × 5 cm2 to 30 × 30 cm2). However, the evaluation of clinical IMRT-plans measured with and without the TD showed good agreement after using a single transmission factor (γ(2%/2mm) > 97%, δ±3% >95%). Furthermore, the response of TD was found to be linear and dose rate independent (maximum difference <0.5% compared to reference measurements). Conclusions When placed in the path of the beam, the TD introduced a slight, clinically acceptable increase of the skin dose even for larger field sizes and smaller SSDs and the influence of the detector on the dose beyond dmax as well as on clinical IMRT-plans was negligible. Since there was no dose rate dependency and the response was linear, the device is therefore suitable for clinical use. Only its absorption has to be compensated during treatment planning, either by the use of a single transmission factor or by including the TD in the incident beam model
Bildschirmtext in Kreditinstituten, Versicherungsunternehmen und Kommunalverwaltungen: Einsatz und Auswirkungen auf die Beschaeftigten
Copy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman