55 research outputs found
A computational analysis of lower bounds for big bucket production planning problems
In this paper, we analyze a variety of approaches to obtain lower bounds for multi-level production planning problems with big bucket capacities, i.e., problems in which multiple items compete for the same resources. We give an extensive survey of both known and new methods, and also establish relationships between some of these methods that, to our knowledge, have not been presented before. As will be highlighted, understanding the substructures of difficult problems provide crucial insights on why these problems are hard to solve, and this is addressed by a thorough analysis in the paper. We conclude with computational results on a variety of widely used test sets, and a discussion of future research
Multisite spectroscopic seismic study of the beta Cep star V2052 Oph: inhibition of mixing by its magnetic field
We used extensive ground-based multisite and archival spectroscopy to derive
observational constraints for a seismic modelling of the magnetic beta Cep star
V2052 Ophiuchi. The line-profile variability is dominated by a radial mode
(f_1=7.14846 d^{-1}) and by rotational modulation (P_rot=3.638833 d). Two
non-radial low-amplitude modes (f_2=7.75603 d^{-1} and f_3=6.82308 d^{-1}) are
also detected. The four periodicities that we found are the same as the ones
discovered from a companion multisite photometric campaign (Handler et al.
2012) and known in the literature. Using the photometric constraints on the
degrees l of the pulsation modes, we show that both f_2 and f_3 are prograde
modes with (l,m)=(4,2) or (4,3). These results allowed us to deduce ranges for
the mass (M \in [8.2,9.6] M_o) and central hydrogen abundance (X_c \in
[0.25,0.32]) of V2052 Oph, to identify the radial orders n_1=1, n_2=-3 and
n_3=-2, and to derive an equatorial rotation velocity v_eq \in [71,75] km
s^{-1}. The model parameters are in full agreement with the effective
temperature and surface gravity deduced from spectroscopy. Only models with no
or mild core overshooting (alpha_ov \in [0,0.15] local pressure scale heights)
can account for the observed properties. Such a low overshooting is opposite to
our previous modelling results for the non-magnetic beta Cep star theta Oph
having very similar parameters, except for a slower surface rotation rate. We
discuss whether this result can be explained by the presence of a magnetic
field in V2052 Oph that inhibits mixing in its interior.Comment: 12 pages, 6 figures and 5 tables; accepted for publication in MNRAS
on 2012 August 1
The shadow position sensors (SPS) formation flying metrology subsystem for the ESA PROBA-3 mission: present status and future developments
PROBA-3 [1] [2] is a Mission of the European Space Agency (ESA) composed of two formation-flying satellites, planned for their joint launch by the end of 2018. Its main purposes have a dual nature: scientific and technological. In particular, it is designed to observe and study the inner part of the visible solar corona, thanks to a dedicated coronagraph called ASPIICS (Association of Spacecraft for Polarimetric and Imaging Investigation of the Corona of the Sun), and to demonstrate the in-orbit formation flying (FF) and attitude control capability of its two satellites. The Coronagraph payload on-board PROBA-3 consists of the following parts: the Coronagraph Instrument (CI) with the Shadow Position Sensor (SPS) on the Coronagraph Spacecraft (CSC), the Occulter Position Sensor (OPSE) [3] [4] and the External Occulting (EO) disk on the Occulter Spacecraft (OSC). The SPS subsystem [5] is one of the main metrological devices of the Mission, adopted to control and to maintain the relative (i.e. between the two satellites) and absolute (i.e. with respect to the Sun) FF attitude. It is composed of eight micro arrays of silicon photomultipliers (SiPMs) [6] that shall be able to measure, with the required sensitivity and dynamic range as asked by ESA, the penumbral light intensity on the Coronagraph entrance pupil. With the present paper we describe the testing activities on the SPS breadboard (BB) and Development Model (DM) as well as the present status and future developments of this PROBA-3 metrological subsystem
Intended Consequences Statement in Conservation Science and Practice
As the biodiversity crisis accelerates, the stakes are higher for threatened plants and animals. Rebuilding the health of our planet will require addressing underlying threats at many scales, including habitat loss and climate change. Conservation interventions such as habitat protection, management, restoration, predator control, trans location, genetic rescue, and biological control have the potential to help threatened or endangered species avert extinction. These existing, well-tested methods can be complemented and augmented by more frequent and faster adoption of new technologies, such as powerful new genetic tools. In addition, synthetic biology might offer solutions to currently intractable conservation problems. We believe that conservation needs to be bold and clear-eyed in this moment of great urgency
Evaluating Gene Drive Approaches for Public Benefit
Gene drive approaches—those which bias inheritance of a genetic element in a population of sexually reproducing organisms—have the potential to provide important public benefits. The spread of selected genetic elements in wild populations of organisms may help address certain challenges, such as transmission of vector-borne human and animal diseases and biodiversity loss due to invasive animals. Adapting various naturally occurring gene drive mechanisms to these aims is a long-standing research area, and recent advances in genetics have made engineering gene drive systems significantly more technically feasible. Gene drive approaches would act through changes in natural environments, thus robust methods to evaluate potential research and use are important. Despite the fact that gene drive approaches build on existing paradigms, such as genetic modification of organisms and conventional biological control, there are material challenges to their evaluation. One challenge is the inherent complexity of ecosystems, which makes precise prediction of changes to the environment difficult. For gene drive approaches that are expected to spread spatially and/or persist temporally, responding to this difficulty with the typical stepwise increases in the scale of studies may not be straightforward after studies begin in the natural environment. A related challenge is that study or use of a gene drive approach may have implications for communities beyond the location of introduction, depending on the spatial spread and persistence of the approach and the population biology of the target organism. This poses a particular governance challenge when spread across national borders is plausible. Finally, community engagement is an important element of responsible research and governance, but effective community engagement for gene drive approaches requires addressing complexity and uncertainty and supporting representative participation in decision making. These challenges are not confronted in a void. Existing frameworks, processes, and institutions provide a basis for effective evaluation of gene drive approaches for public benefit. Although engineered gene drive approaches are relatively new, the necessities of making decisions despite uncertainty and governing actions with potential implications for shared environments are well established. There are methodologies to identify potential harms and assess risks when there is limited experience to draw upon, and these methodologies have been applied in similar contexts. There are also laws, policies, treaties, agreements, and institutions in place across many jurisdictions that support national and international decision making regarding genetically modified organisms and the potential applications of gene drive approaches, such as public health and biodiversity conservation. Community engagement is an established component of many decision-making processes, and related experience and conceptual frameworks can inform engagement by researchers. The existence of frameworks, processes, and institutions provides an important foundation for evaluating gene drive approaches, but it is not sufficient by itself. They must be rigorously applied, which requires resources for risk assessment, research, and community engagement and diligent implementation by governance institutions. The continued evolution of the frameworks, processes, and institutions is important to adapt to the growing understanding of gene drive approaches. With appropriate resources and diligence, it will be possible to responsibly evaluate and make decisions on gene drive approaches for public benefit
Euclid Near Infrared Spectrometer and Photometer instrument concept and first test results obtained for different breadboards models at the end of phase C
The Euclid mission objective is to understand why the expansion of the Universe is accelerating through by mapping the geometry of the dark Universe by investigating the distance-redshift relationship and tracing the evolution of cosmic structures. The Euclid project is part of ESA's Cosmic Vision program with its launch planned for 2020 (ref [1]). The NISP (Near Infrared Spectrometer and Photometer) is one of the two Euclid instruments and is operating in the near-IR spectral region (900- 2000nm) as a photometer and spectrometer. The instrument is composed of: - a cold (135K) optomechanical subsystem consisting of a Silicon carbide structure, an optical assembly (corrector and camera lens), a filter wheel mechanism, a grism wheel mechanism, a calibration unit and a thermal control system - a detection subsystem based on a mosaic of 16 HAWAII2RG cooled to 95K with their front-end readout electronic cooled to 140K, integrated on a mechanical focal plane structure made with molybdenum and aluminum. The detection subsystem is mounted on the optomechanical subsystem structure - a warm electronic subsystem (280K) composed of a data processing / detector control unit and of an instrument control unit that interfaces with the spacecraft via a 1553 bus for command and control and via Spacewire links for science data This presentation describes the architecture of the instrument at the end of the phase C (Detailed Design Review), the expected performance, the technological key challenges and preliminary test results obtained for different NISP subsystem breadboards and for the NISP Structural and Thermal model (STM)
Interactive multiple criteria optimization for capital budgeting in a Canadian telecommunications company
Le texte intégral de ce document de travail n'est pas disponible en ligne. Une copie papier est disponible à l'Annexe de la bibliothéque. Effectuez une recherche par titre dans le catalogue pour réserver le document. // The full text of this working paper is not available online. A print copy is available in the Library Annex. Search by title in the catalogue to request the paper
- …