8 research outputs found

    Predictive vehicle ride discomfort model based on in-situ Stevens power law parameters

    Get PDF
    The current dynamic ride comfort mathematical models don’t use Maxwell arrangement of vehicle suspension occurring due to top mount and the discomfort weightings used are based on the shaker table tests which ignore the influence of vehicle dynamics, for example the effect of seat cushion. A refined integrated vehicle-occupant 10 degree of freedom model that includes top mounts is developed to estimate the occupant response to given harmonic input. The dynamic responses are combined with experimentally obtained in-situ discomfort indices for a car that incorporates the effects of features such as seat cushion. The Stevens power law parameters are estimated and compared with previous studies; the perception model is then used to predict discomfort index as a function of frequency. The influence of the relative stiffness of the top mount and suspension damping on the resonance frequencies is discussed. The acceleration in wheel hop mode can be ~ 3 times larger than that when top mount is not included. The influence of resonance frequencies suggests importance of not just using frequency average discomfort index while optimizing suspension and seat parameters

    Hyperelastic polymer material models for robust fatigue performance of automotive LED lamps

    Get PDF
    The object of this paper is to determine the statistics of parameters of hyperelastic models specific to Polybutylene Terephthalate filled with 30% glass fibre (PBT GF30) and Polymethyl Methacrylate (PMMA) materials used in automotive lamps. The hyperelastic behaviour of both materials, a semi-crystalline and an amorphous, is modelled using appropriate hyperelastic models. The stress-strain curves of the materials were measured under uniaxial tension using a non-contact video gauge. Five samples each were tested to measure the effect of manufacturing variability. The model parameter statistics were determined, the mean value of the model parameters were used to construct average stress-strain behavior, which is then compared to the experimental stresses. Among all the models and their associated parameters studied, the 3-parameter Mooney-Rivlin model provided the most accurate prediction of the behaviour for both materials. The model showed excellent stability and is therefore the most appropriate model to represent variations due to the manufacturing process. The detailed study of the correlation of the model parameters provided a good understanding of how the parameters are related to each other, enabling construction of complete probability distribution functions for further analysis

    Effect of Structural Damping on Vibrations Transmitted to Road Cyclists

    No full text

    Rated Life Calculation Potential of Gearbox Model Based Force Estimates

    No full text
    corecore