11 research outputs found
Mutational analysis and modeling of negative allosteric modulator binding sites in AMPA receptors
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) constitute a subclass of the ionotropic glutamate receptor superfamily, which functions as glutamate-gated cation channels to mediate the majority of excitatory neurotransmission in the central nervous system. AMPARs are therapeutic targets in a range of brain disorders associated with abnormal glutamate hyperactivity. Multiple classes of AMPAR inhibitors have been developed during the past decades, including competitive antagonists, ion channel blockers, and negative allosteric modulators (NAMs). At present, the NAM is the only class of AMPAR ligands that have been developed into safe and useful drugs in humans in the form of perampanel (Fycompa), which was recently approved for treatment of epilepsy. Compared with the detailed understanding of other AMPAR ligand classes, surprisingly little information has been available regarding the molecular mechanism of perampanel and other classes of NAMs at AMPARs; including the location and structure of NAM binding pockets in the receptor complex. However, structures of the AMPAR GluA2 in complex with NAMs were recently reported that unambiguously identified the NAM binding sites. In parallel with this work, our aim with the present study was to identify specific residues involved in the formation of the NAM binding site for three prototypical AMPAR NAMs. Hence, we have performed a mutational analysis of the AMPAR region that links the four extracellular ligand-binding domains to the central ion channel in the transmembrane domain region. Furthermore, we perform computational ligand docking of the NAMs into structural models of the homomeric GluA2 receptor and optimize side chain conformations around the NAMs to model how NAMs bind in this specific site. The new insights provide potentially valuable input for structure-based drug design of new NAMs. SIGNIFICANCE STATEMENT: The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are glutamate-gated ion channels that mediate the majority of excitatory neurotransmission in the brain. Negative allosteric modulators of AMPA receptors are considered to have significant therapeutic potential in diseases linked to glutamate hyperactivity. The present work employs mutational analysis and molecular modeling of the binding site for prototypical NAMs to provide new molecular insight into how NAMs interact with the AMPA receptor, which is of potential use for future design of new types of NAMs
Recommended from our members
PDGF regulates the actin cytoskeleton through hnRNP-K-mediated activation of the ubiquitin E-3-ligase MIR
PDGF is a potent chemotactic mitogen and a strong inductor of fibroblast motility. In Swiss 3T3 fibroblasts, exposure to PDGF but not EGF or IGF-1 causes a rapid loss of actin stress fibers (SFs) and focal adhesions (FAs), which is followed by the development of retractile dendritic protrusions and induction of motility. The PDGF-specific actin reorganization was blocked by inhibition of Src-kinase and the 26S proteasome. PDGF induced Src-dependent association between the multifunctional transcription/translation regulator hnRNP-K and the mRNA-encoding myosin regulatory light-chain (MRLC)-interacting protein (MIR), a E3-ubiquitin ligase that is MRLC specific. This in turn rapidly increased MIR expression, and led to ubiquitination and proteasome-mediated degradation of MRLC. Downregulation of MIR by RNA muting prevented the reorganization of actin structures and severely reduced the migratory and wound-healing potential of PDGF-treated cells. The results show that activation of MIR and the resulting removal of diphosphorylated MRLC are essential for PDGF to instigate and maintain control over the actin-myosin-based contractile system in Swiss 3T3 fibroblasts. The PDGF induced protein destabilization through the regulation of hnRNP-K controlled ubiquitin-ligase translation identifies a novel pathway by which external stimuli can regulate phenotypic development through rapid, organelle-specific changes in the activity and stability of cytoskeletal regulators
Clinical characteristics and management of bipolar disorder in women across the life span
Though prevalent in both genders, specific consideration needs to be given when treating a woman suffering from bipolar disorder over her lifetime. Bipolar disorder is a serious and incapacitating illness affecting an estimated 5% of women. The first episode of illness in women is usually a depressive episode. Female gender has been associated with greater axis-one comorbidity, more depressive episodes, rapid cycling and mixed affective states. Special consideration is required for the treatment of bipolar disorder during reproductive events. More studies are required to better understand the course, outcome and gender-specific treatment strategies of this disorder.<br /
Going around in circles: virulence plasmids in enteric pathogens
Plasmids have a major role in the development of disease caused by enteric bacterial pathogens. Virulence plasmids are usually large (>40 kb) low copy elements and encode genes that promote host–pathogen interactions. Although virulence plasmids provide advantages to bacteria in specific conditions, they often impose fitness costs on their host. In this Review, we discuss virulence plasmids in Enterobacteriaceae that are important causes of diarrhoea in humans, Shigella spp., Salmonella spp., Yersinia spp and pathovars of Escherichia coli. We contrast these plasmids with those that are routinely used in the laboratory and outline the mechanisms by which virulence plasmids are maintained in bacterial populations. We highlight examples of virulence plasmids that encode multiple mechanisms for their maintenance (for example, toxin–antitoxin and partitioning systems) and speculate on how these might contribute to their propagation and success