2 research outputs found

    Accelerated Life Testing Of Subsea Equipment Under Hydrostatic Pressure

    Get PDF
    Accelerated Life Testing (ALT) is an effective method of demonstrating and improving product reliability in applications where the products are expected to perform for a long period of time. ALT accelerates a given failure mode by testing at amplified stress level(s) in excess of operational limits. Statistical analysis (parameter estimation) is then performed on the data, based on an acceleration model to make life predictions at use level. The acceleration model thus forms the basis of accelerated life testing methodology. Well established accelerated models such as the Arrhenius model and the Inverse Power Law (IPL) model exist for key stresses such as temperature and voltage. But there are other stresses like subsea pressure, where there is no clear model of choice. This research proposes a pressure-life (acceleration) model for the first time for life prediction under subsea pressure for key mechanical/physical failure mechanisms. Three independent accelerated tests were conducted and their results analyzed to identify the best model for the pressure-life relationship. The testing included material tests in standard coupons to investigate the effect of subsea pressure on key physical, mechanical, and electrical properties. Tests were also conducted at the component level on critical components that function as a pressure barrier. By comparing the likelihood values of multiple reasonable candidate models for the individual tests, the exponential model was identified as a good model for the pressure-life relationship. In addition to consistently providing good fit among the three tests, the exponential model was also consistent with field data (validation with over 10 years of field data) and demonstrated several characteristics that enable robust life predictions in a variety iv of scenarios. In addition the research also used the process of Bayesian analysis to incorporate prior information from field and test data to bolster the results and increase the confidence in the predictions from the proposed model

    Versatility And Customization Of Portable Cmm In Reverse Engineering A

    Get PDF
    Reverse engineering is the technique of gathering scientific knowledge about a part by physically examining it. In the computer aided manufacturing world this is referred to as Part to CAD conversion, where the geometry of physical objects are being captured as Digital 3-D CAD Data. This is vital not only to produce drawing of parts for which no CAD data exists, but also is frequently being used to produce better designs. The industry professionals to achieve this are frequently using Coordinate Measuring Machine [CMM] among other tools. The purpose of this thesis is to demonstrate the versatility of portable CMM as a Reverse Engineering Tool through application experiments aimed at industrial and non-industrial solutions. The thesis also researches in to the feasibility of customization options through experimentations focused on reverse engineering. Focusing further on Reverse Engineering applications, some of the interesting digitizing and CAD techniques are demonstrated and compared
    corecore