4 research outputs found

    Adaptive Foot in Lower-Limb Prostheses

    No full text
    The human foot consists of complex sets of joints. The adaptive nature of the human foot enables it to be stable on any uneven surface. It is important to have such adaptive capabilities in the artificial prosthesis to achieve most of the essential movements for lower-limb amputees. However, many existing lower-limb prostheses lack the adaptive nature. This paper reviews lower-limb adaptive foot prostheses. In order to understand the design concepts of adaptive foot prostheses, the biomechanics of human foot have been explained. Additionally, the requirements and design challenges are investigated and presented. In this review, adaptive foot prostheses are classified according to actuation method. Furthermore, merits and demerits of present-day adaptive foot prostheses are presented based on the hardware construction. The hardware configurations of recent adaptive foot prostheses are analyzed and compared. At the end, potential future developments are highlighted

    Lightweight Bioinspired Exoskeleton for Wrist Rehabilitation Powered by Twisted and Coiled Artificial Muscles

    No full text
    Stroke, cerebral palsy, and spinal cord injuries represent the most common leading causes of upper limb impairment. In recent years, rehabilitation robotics has progressed toward developing wearable technologies to promote the portability of assistive devices and to enable home rehabilitation of the upper extremities. However, current wearable technologies mainly rely on electric motors and rigid links or soft pneumatic actuators and are usually bulky and cumbersome. To overcome the limitations of existing technologies, in this paper, a first prototype of a lightweight, ungrounded, soft exoskeleton for wrist rehabilitation powered by soft and flexible carbon fibers-based twisted and coiled artificial muscles (TCAMs) is proposed. The device, which weighs only 0.135 kg, emulates the arrangement and working mechanism of skeletal muscles in the upper extremities and is able to perform wrist flexion/extension and ulnar/radial deviation. The range of motion and the force provided by the exoskeleton is designed through simple kinematic and dynamic theoretical models, while a thermal model is used to design a thermal insulation system for TCAMs during actuation. The device’s ability to perform passive and active-resisted wrist rehabilitation exercises and EMG-based actuation is also demonstrated

    Lightweight Bioinspired Exoskeleton for Wrist Rehabilitation Powered by Twisted and Coiled Artificial Muscles

    No full text
    Stroke, cerebral palsy, and spinal cord injuries represent the most common leading causes of upper limb impairment. In recent years, rehabilitation robotics has progressed toward developing wearable technologies to promote the portability of assistive devices and to enable home rehabilitation of the upper extremities. However, current wearable technologies mainly rely on electric motors and rigid links or soft pneumatic actuators and are usually bulky and cumbersome. To overcome the limitations of existing technologies, in this paper, a first prototype of a lightweight, ungrounded, soft exoskeleton for wrist rehabilitation powered by soft and flexible carbon fibers-based twisted and coiled artificial muscles (TCAMs) is proposed. The device, which weighs only 0.135 kg, emulates the arrangement and working mechanism of skeletal muscles in the upper extremities and is able to perform wrist flexion/extension and ulnar/radial deviation. The range of motion and the force provided by the exoskeleton is designed through simple kinematic and dynamic theoretical models, while a thermal model is used to design a thermal insulation system for TCAMs during actuation. The device’s ability to perform passive and active-resisted wrist rehabilitation exercises and EMG-based actuation is also demonstrated
    corecore