51 research outputs found

    Whole-body bioluminescence imaging of T-cell response in PDAC models

    Get PDF
    Introduction: The location of T-cells during tumor progression and treatment provides crucial information in predicting the response in vivo. Methods: Here, we investigated, using our bioluminescent, dual color, T-cell reporter mouse, termed TbiLuc, T-cell location and function during murine PDAC tumor growth and checkpoint blockade treatment with anti-PD-1 and anti-CTLA-4. Using this model, we could visualize T-cell location and function in the tumor and the surrounding tumor microenvironment longitudinally. We used murine PDAC clones that formed in vivo tumors with either high T-cell infiltration (immunologically ‘hot’) or low T-cell infiltration (immunologically ‘cold’). Results: Differences in total T-cell bioluminescence could be seen between the ‘hot’ and ‘cold’ tumors in the TbiLuc mice. During checkpoint blockade treatment we could see in the tumor-draining lymph nodes an increase in bioluminescence on day 7 after treatment. Conclusions: In the current work, we showed that the TbiLuc mice can be used to monitor T-cell location and function during tumor growth and treatment.</p

    GATA6 identifies an immune-enriched phenotype linked to favorable outcomes in patients with pancreatic cancer undergoing upfront surgery

    Get PDF
    This study underscores GATA6’s role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6’s prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.</p

    GATA6 identifies an immune-enriched phenotype linked to favorable outcomes in patients with pancreatic cancer undergoing upfront surgery

    Get PDF
    This study underscores GATA6’s role in distinguishing classical and basal-like pancreatic ductal adenocarcinoma (PDAC) phenotypes. Retrospective studies associate GATA6 immunohistochemistry (IHC) expression with survival outcomes, warranting prospective validation. In a prospective treatment-naive cohort of patients with resected PDAC, GATA6 IHC proves a prognostic discriminator, associating high GATA6 expression with extended survival and the classical PDAC phenotype. However, GATA6’s prognostic significance is numerically lower after gemcitabine-based neoadjuvant chemoradiotherapy compared to its significance in patients treated with upfront surgery. Furthermore, GATA6 is implicated in immunomodulation, although a comprehensive investigation of its immunological role is lacking. Treatment-naive PDAC tumors with varying GATA6 expression yield distinct immunological landscapes. Tumors highly expressing GATA6 show reduced infiltration of immunosuppressive regulatory T cells and M2 macrophages but increased infiltration of immune-stimulating, antigen-presenting, and activated T cells. Our findings caution against solely relying on GATA6 for molecular subtyping in clinical trials and open avenues for exploring immune-based combination therapies.</p

    Scleral Proteome in Noninfectious Scleritis Unravels Upregulation of Filaggrin-2 and Signs of Neovascularization

    Get PDF
    Purpose: Scleritis is a severe inflammatory ocular disorder with unknown pathogenesis. We investigated healthy sclera as well as sclera affected by noninfectious scleritis for differentially expressed proteins using a mass spectrometry approach. Methods: We collected scleral samples of enucleated eyes due to severe noninfectious scleritis (n = 3), and control scleral tissues (n = 5), all exenterated eyes for eyelid carcinomas (n = 4), or choroidal melanoma (n = 1) without scleral invasion. Samples were prepared for the nano liquid-chromatography mass spectrometer (LC-MS), data were analyzed using proteomics software (Scaffold), and is available via ProteomeXchange (identifier PXD038727). Samples were also stained for immuno-histopathological evaluation. Results: Mass spectrometry identified 629 proteins within the healthy and diseased scleral tissues, whereof collagen type XII, VI, and I were the most abundantly expressed protein. Collagen type II-XII was also present. Filaggrin-2, a protein that plays a crucial role in epidermal barrier function, was found upregulated in all scleritis cases. In addition, other epithelial associated proteins were upregulated (such as keratin 33b, 34, and 85, epiplakin, transglutaminase-3, galectin 7, and caspase-14) in scleritis. Further, upregulated proteins involved in regulation of the cytoskeleton (vinculin and myosin 9), and housekeeping proteins were found (elongation factor-2 and cytoplasmic dynein 1) in our study. Upregulation of filaggrin-2 and myosin-9 was confirmed with immunohistochemistry, the latter protein showing co-localization with the endothelial cell marker ETC-related gene (ERG), indicating neovascularization in scleral tissue affected by scleritis. Conclusions: We found upregulation of filaggrin-2 and signs of neovascularization in scleral tissue of patients with noninfectious scleritis. Further research, ideally including more scleritis cases, is needed to validate our findings.</p

    Mast Cells in Kidney Transplant Biopsies With Borderline T Cell-mediated Rejection and Their Relation to Chronicity

    Get PDF
    Background. Mast cells are potential contributors to chronic changes in kidney transplants (KTx). Here, the role of mast cells (MCs) in KTx is investigated in patients with minimal inflammatory lesions. Methods. Fourty-seven KTx biopsies (2009-2018) with borderline pathological evidence for T cell-mediated rejection according to the Banff'17 Update were retrospectively included and corresponding clinical data was collected. Immunohistochemistry for tryptase was performed on formalin-fixed paraffin-embedded sections. Cortical MCs were counted and corrected for area (MC/mmÂČ). Interstitial fibrosis was assessed by Sirius Red staining and quantified using digital image analysis (QuPath). Results. Increased MC number was correlated to donor age (spearman's r = 0.35, P = 0.022), deceased donor kidneys (mean difference = 0.74, t [32.5] = 2.21, P = 0.035), and delayed graft function (MD = 0.78, t [33.9] = 2.43, P = 0.020). Increased MC number was also correlated to the amount of interstitial fibrosis (r = 0.42, P = 0.003) but did not correlate with transplant function over time (r = -0.14, P = 0.36). Additionally, transplant survival 2 y post-biopsy was not correlated to MC number (mean difference = -0.02, t [15.36] = -0.06, P = 0.96). Conclusions. MC number in suspicious (borderline) for acute T cell-mediated rejection is correlated to interstitial fibrosis and time post-transplantation, suggesting MCs to be a marker for cumulative burden of tissue injury. There was no association between MCs and transplant function over time or transplant survival 2 y post-biopsy. It remains unclear whether MCs are just a bystander or have pro-inflammatory or anti-inflammatory effects in the KTx with minimal lesions.</p

    Increase in venous thromboembolism in SARS-CoV-2 infected lung tissue:proteome analysis of lung parenchyma, isolated endothelium, and thrombi

    Get PDF
    Aims: COVID-19 pneumonia is characterized by an increased rate of deep venous thrombosis and pulmonary embolism. To better understand the pathophysiology behind thrombosis in COVID-19, we performed proteomics analysis on SARS-CoV-2 infected lung tissue. Methods: Liquid chromatography mass spectrometry was performed on SARS-CoV-2 infected postmortem lung tissue samples. Five protein profiling analyses were performed: whole slide lung parenchyma analysis, followed by analysis of isolated thrombi and endothelium, both stratified by disease (COVID-19 versus influenza) and thrombus morphology (embolism versus in situ). Influenza autopsy cases with pulmonary thrombi were used as controls. Results: Compared to influenza controls, both analyses of COVID-19 whole-tissue and isolated endothelium showed upregulation of proteins and pathways related to liver metabolism including urea cycle activation, with arginase being among the top upregulated proteins in COVID-19 lung tissue. Analysis of isolated COVID-19 thrombi showed significant downregulation of pathways related to platelet activation compared to influenza thrombi. Analysis of isolated thrombi based on histomorphology shows that in situ thrombi have significant upregulation of coronavirus pathogenesis proteins. Conclusions: The decrease in platelet activation pathways in severe COVID-19 thrombi suggests a relative increase in venous thromboembolism, as thrombi from venous origin tend to contain fewer platelets than arterial thrombi. Based on histomorphology, in situ thrombi show upregulation of various proteins related to SARS-CoV-2 pathogenesis compared to thromboemboli, which may indicate increased in situ pulmonary thrombosis in COVID-19. Therefore, this study supports the increase of venous thromboembolism without undercutting the involvement of in situ thrombosis in severe COVID-19.</p

    Transcriptomic properties of her2+ ductal carcinoma in situ of the breast associate with absence of immune cells

    Get PDF
    SIMPLE SUMMARY: Tumor-infiltrating lymphocytes (TILs) are likely to play a role in the biological behavior of HER2+ ductal carcinoma in situ (DCIS). To prevent invasiveness, the potential of targeted immune-modulating treatment of HER2+ DCIS has been explored. We identified a 29-gene expression profile that was associated with the density of TILs. These genes included CCND3, DUSP10 and RAP1GAP, which may guide towards more rationalized choices with respect to immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy. ABSTRACT: The identification of transcriptomic alterations of HER2+ ductal carcinoma in situ (DCIS) that are associated with the density of tumor-infiltrating lymphocytes (TILs) could contribute to optimizing choices regarding the potential benefit of immune therapy. We compared the gene expression profile of TIL-poor HER2+ DCIS to that of TIL-rich HER2+ DCIS. Tumor cells from 11 TIL-rich and 12 TIL-poor DCIS cases were micro-dissected for RNA isolation. The Ion AmpliSeq Transcriptome Human Gene Expression Kit was used for RNA sequencing. After normalization, a Mann–Whitney rank sum test was used to analyze differentially expressed genes between TIL-poor and TIL-rich HER2+ DCIS. Whole tissue sections were immunostained for validation of protein expression. We identified a 29-gene expression profile that differentiated TIL-rich from TIL-poor HER2+ DCIS. These genes included CCND3, DUSP10 and RAP1GAP, which were previously described in breast cancer and cancer immunity and were more highly expressed in TIL-rich DCIS. Using immunohistochemistry, we found lower protein expression in TIL-rich DCIS. This suggests regulation of protein expression at the posttranslational level. We identified a gene expression profile of HER2+ DCIS cells that was associated with the density of TILs. This classifier may guide towards more rationalized choices regarding immune-mediated therapy in HER2+ DCIS, such as targeted vaccine therapy

    Constitutive programmed death ligand 1 expression protects gastric G-cells from Helicobacter pylori–induced inflammation

    Get PDF
    INTRODUCTION: Gastric intestinal metaplasia (GIM) is a premalignant lesion, highly associated with Helicobacter pylori infection. Previous studies have shown that H. pylori is able to induce the expression of programmed death ligand 1 (PD‐L1), an inhibitory immune modulator, in gastric cells. Our aim was to investigate whether tissues from GIM patients may exploit PD‐L1 expression upon H. pylori infection to evade immunosurveillance. METHODS: Immunohistochemistry was performed for PD‐L1 and enteroendocrine markers somatostatin and gastrin on samples derived from a cohort of patients with known GIM, both before and after H. pylori eradication. To determine the identity of any observed PD‐L1‐positive cells, we performed multiplex immunofluorescent staining and analysis of single‐cell sequencing data. RESULTS: GIM tissue was rarely positive for PD‐L1. In normal glands from GIM patients, PD‐L1 was mainly expressed by gastrin‐positive G‐cells. While the D‐cell and G‐cell compartments were both diminished 2‐fold (p = .015 and p = .01, respectively) during H. pylori infection in the normal antral tissue of GIM patients, they were restored 1 year after eradication. The total number of PD‐L1‐positive cells was not affected by H. pylori, but the percentage of PD‐L1‐positive G‐cells was 30% higher in infected subjects (p = .011), suggesting that these cells are preferentially rescued from destruction. CONCLUSIONS: Antral G‐cells frequently express PD‐L1 during homeostasis. G‐cells seem to be protected from H. pylori‐induced immune destruction by PD‐L1 expression. GIM itself does not express PD‐L1 and is unlikely to escape immunosurveillance via expression of PD‐L1

    Virus-specific T<sub>RM</sub> cells of both donor and recipient origin reside in human kidney transplants

    Get PDF
    Tissue-resident lymphocytes (TRLs) are critical for local protection against viral pathogens in peripheral tissue. However, it is unclear if TRLs perform a similar role in transplanted organs under chronic immunosuppressed conditions. In this study, we aimed to characterize the TRL compartment in human kidney transplant nephrectomies and examine its potential role in antiviral immunity. The TRL compartment of kidney transplants contained diverse innate, innate-like, and adaptive TRL populations expressing the canonical residency markers CD69, CD103, and CD49a. Chimerism of donor and recipient cells was present in 43% of kidney transplants and occurred in all TRL subpopulations. Paired single-cell transcriptome and T cell receptor (TCR) sequencing showed that donor and recipient tissue–resident memory T (TRM) cells exhibit striking similarities in their transcriptomic profiles and share numerous TCR clonotypes predicted to target viral pathogens. Virus dextramer staining further confirmed that CD8 TRM cells of both donor and recipient origin express TCRs with specificities against common viruses, including CMV, EBV, BK polyomavirus, and influenza A. Overall, the study results demonstrate that a diverse population of TRLs resides in kidney transplants and offer compelling evidence that TRM cells of both donor and recipient origin reside within this TRL population and may contribute to local protection against viral pathogens.</p
    • 

    corecore