272 research outputs found
Promoting deep learning through design - discussion, student activity and assessment
There is widespread evidence that Australia is currently facing falling student participation rates in science and mathematics subjects at secondary school and university undergraduate levels. The future implications of this science-deficit are widely acknowledged. Unfortunately, science teaching itself is also widely seen as being dull, too content-heavy, delivered to mass-audiences and assessed in ways promoting surface approaches to learning. To address these issues, and issues relating to the apparent lack of challenge for very able students in their first year at university, The University of Queensland developed the Advanced Study Program in Science (ASPinS). This initiative offers an enhanced learning experience to a select group of high-achieving students in addition to their existing undergraduate study in a Science-related degree program. ASPinS offers these students the opportunity to interact with leading research scientists, broaden their understanding of important scientific issues, experience new interactive learning opportunities, undertake research projects and obtain an authentic insight into science as a career. This presentation, however, will only focus on the unique first year course offered within the 3 year ASPinS experience – BIOL1017 “Perspectives in Science”. In this course students are encouraged to think about important current scientific issues from different perspectives – both scientific and non-scientific. Panels of expert scientists use their knowledge and experience to present real scientific issues for students to examine and discuss. These panel discussions cover a spectrum of medical, environmental and social issues, covering different viewpoints and possible solutions. Combining this effective panel model with an array of student-led activities provides an ideal environment for learning. Students are made to apply their new knowledge, discuss issues and construct thoughts, opinions and products – depending on the specifically designed activities. Relevant assessment tasks include group-writing activities and oral presentations which enable students to demonstrate their learning through authentic contexts that are carefully designed to influence the way students learn. Authentic assessment tasks enable students to see a purpose for the product (assessment) they are producing while at the same time enabling them to synthesise the various scientific ‘facts’ and issues they have been discussing. This level of assessment activity, by its nature, encourages higher-order learning. Student evaluations have consistently confirmed that the key to the success of each Module within the course lies in the breadth of speakers selected to represent the different angles associated with the topic under discussion and the related activities and assessment tasks. The findings indicate that students value the opportunity to explore the multi-disciplinary nature of science-related issues and to actually discuss the issues. The “Perspectives in Science” course is a model for the success of combining teaching and learning theory and scholarship, to a particular set of objectives, to create a highly effective learning environment and a meaningful student experience
Interactions of ingested food, beverage, and tobacco components involving human cytochrome P4501A2, 2A6, 2E1, and 3A4 enzymes.
Human cytochrome P450 (P450) enzymes are involved in the oxidation of natural products found in foods, beverages, and tobacco products and their catalytic activities can also be modulated by components of the materials. The microsomal activation of aflatoxin B1 to the exo-8,9-epoxide is stimulated by flavone and 7,8-benzoflavone, and attenuated by the flavonoid naringenin, a major component of grapefruit. P4502E1 has been demonstrated to play a potentially major role in the activation of a number of very low-molecular weight cancer suspects, including ethyl carbamate (urethan), which is present in alcoholic beverages and particularly stone brandies. The enzyme (P4502E1) is also known to be inducible by ethanol. Tobacco contains a large number of potential carcinogens. In human liver microsomes a significant role for P4501A2 can be demonstrated in the activation of cigarette smoke condensate. Some of the genotoxicity may be due to arylamines. P4501A2 is also inhibited by components of crude cigarette smoke condensate. The tobacco-specific nitrosamines are activated by a number of P450 enzymes. Of those known to be present in human liver, P4501A2, 2A6, and 2E1 can activate these nitrosamines to genotoxic products
Detection by NMR of a "local spin-gap" in quenched CsC60
We present a 13C and 133Cs NMR investigation of the CsC60 cubic quenched
phase. Previous ESR measurements suggest that this phase is metallic, but NMR
reveals contrasting electronic behavior on the local scale. The 13C
spin-lattice relaxation time (T1) exhibits a typical metallic behavior down to
50 K, but indicates that a partial spin-gap opens for T<50 K. Unexpectedly,
133Cs NMR shows that there are two inequivalent Cs sites. For one of these
sites, the NMR shift and (T1T)^{-1} follow an activated law, confirming the
existence of a spin-gap. We ascribe this spin-gap to the occurrence of
localized spin-singlets on a small fraction of the C60 molecules.Comment: 4 figure
Slepton pair production in the POWHEG BOX
We present an implementation for slepton pair production at hadron colliders
in the POWHEG BOX, a framework for combining next-to-leading order QCD
calculations with parton-shower Monte-Carlo programs. Our code provides a SUSY
Les Houches Accord interface for setting the supersymmetric input parameters.
Decays of the sleptons and parton-shower effects are simulated with PYTHIA.
Focussing on a representative point in the supersymmetric parameter space we
show results for kinematic distributions that can be observed experimentally.
While next-to-leading order QCD corrections are sizable for all distributions,
the parton shower affects the color-neutral particles only marginally.
Pronounced parton-shower effects are found for jet distributions.Comment: 10 pages, 4 figure
Neuronal activity in medial superior temporal area (MST) during memory-based smooth pursuit eye movements in monkeys
We examined recently neuronal substrates for predictive pursuit using a memory-based smooth pursuit task that distinguishes the discharge related to memory of visual motion-direction from that related to movement preparation. We found that the supplementary eye fields (SEF) contain separate signals coding memory and assessment of visual motion-direction, decision not-to-pursue, and preparation for pursuit. Since medial superior temporal area (MST) is essential for visual motion processing and projects to SEF, we examined whether MST carried similar signals. We analyzed the discharge of 108 MSTd neurons responding to visual motion stimuli. The majority (69/108 = 64%) were also modulated during smooth pursuit. However, in nearly all (104/108 = 96%) of the MSTd neurons tested, there was no significant discharge modulation during the delay periods that required memory of visual motion-direction or preparation for smooth pursuit or not-to-pursue. Only 4 neurons of the 108 (4%) exhibited significantly higher discharge rates during the delay periods; however, their responses were non-directional and not instruction specific. Representative signals in the MSTd clearly differed from those in the SEF during memory-based smooth pursuit. MSTd neurons are unlikely to provide signals for memory of visual motion-direction or preparation for smooth pursuit eye movements
Covert Tracking: A Combined ERP and Fixational Eye Movement Study
Attention can be directed to particular spatial locations, or to objects that appear at anticipated points in time. While most work has focused on spatial or temporal attention in isolation, we investigated covert tracking of smoothly moving objects, which requires continuous coordination of both. We tested two propositions about the neural and cognitive basis of this operation: first that covert tracking is a right hemisphere function, and second that pre-motor components of the oculomotor system are responsible for driving covert spatial attention during tracking. We simultaneously recorded event related potentials (ERPs) and eye position while participants covertly tracked dots that moved leftward or rightward at 12 or 20°/s. ERPs were sensitive to the direction of target motion. Topographic development in the leftward motion was a mirror image of the rightward motion, suggesting that both hemispheres contribute equally to covert tracking. Small shifts in eye position were also lateralized according to the direction of target motion, implying covert activation of the oculomotor system. The data addresses two outstanding questions about the nature of visuospatial tracking. First, covert tracking is reliant upon a symmetrical frontoparietal attentional system, rather than being right lateralized. Second, this same system controls both pursuit eye movements and covert tracking
Effects of attention and perceptual uncertainty on cerebellar activity during visual motion perception
Recent clinical and neuroimaging studies have revealed that the human cerebellum plays a role in visual motion perception, but the nature of its contribution to this function is not understood. Some reports suggest that the cerebellum might facilitate motion perception by aiding attentive tracking of visual objects. Others have identified a particular role for the cerebellum in discriminating motion signals in perceptually uncertain conditions. Here, we used functional magnetic resonance imaging to determine the degree to which cerebellar involvement in visual motion perception can be explained by a role in sustained attentive tracking of moving stimuli in contrast to a role in visual motion discrimination. While holding the visual displays constant, we manipulated attention by having participants attend covertly to a field of random-dot motion or a colored spot at fixation. Perceptual uncertainty was manipulated by varying the percentage of signal dots contained within the random-dot arrays. We found that attention to motion under high perceptual uncertainty was associated with strong activity in left cerebellar lobules VI and VII. By contrast, attending to motion under low perceptual uncertainty did not cause differential activation in the cerebellum. We found no evidence to support the suggestion that the cerebellum is involved in simple attentive tracking of salient moving objects. Instead, our results indicate that specific subregions of the cerebellum are involved in facilitating the detection and discrimination of task-relevant moving objects under conditions of high perceptual uncertainty. We conclude that the cerebellum aids motion perception under conditions of high perceptual demand
Generation of integration-free neural progenitor cells from cells in human urine
Human neural stem cells hold great promise for research and therapy in neural disease. We describe the generation of integration-free and expandable human neural progenitor cells (NPCs). We combined an episomal system to deliver reprogramming factors with a chemically defined culture medium to reprogram epithelial-like cells from human urine into NPCs (hUiNPCs). These transgene-free hUiNPCs can self-renew and can differentiate into multiple functional neuronal subtypes and glial cells in vitro. Although functional in vivo analysis is still needed, we report that the cells survive and differentiate upon transplant into newborn rat brain.postprin
DNA Damage, Somatic Aneuploidy, and Malignant Sarcoma Susceptibility in Muscular Dystrophies
Albeit genetically highly heterogeneous, muscular dystrophies (MDs) share a convergent pathology leading to muscle wasting accompanied by proliferation of fibrous and fatty tissue, suggesting a common MD–pathomechanism. Here we show that mutations in muscular dystrophy genes (Dmd, Dysf, Capn3, Large) lead to the spontaneous formation of skeletal muscle-derived malignant tumors in mice, presenting as mixed rhabdomyo-, fibro-, and liposarcomas. Primary MD–gene defects and strain background strongly influence sarcoma incidence, latency, localization, and gender prevalence. Combined loss of dystrophin and dysferlin, as well as dystrophin and calpain-3, leads to accelerated tumor formation. Irrespective of the primary gene defects, all MD sarcomas share non-random genomic alterations including frequent losses of tumor suppressors (Cdkn2a, Nf1), amplification of oncogenes (Met, Jun), recurrent duplications of whole chromosomes 8 and 15, and DNA damage. Remarkably, these sarcoma-specific genetic lesions are already regularly present in skeletal muscles in aged MD mice even prior to sarcoma development. Accordingly, we show also that skeletal muscle from human muscular dystrophy patients is affected by gross genomic instability, represented by DNA double-strand breaks and age-related accumulation of aneusomies. These novel aspects of molecular pathologies common to muscular dystrophies and tumor biology will potentially influence the strategies to combat these diseases
- …