2 research outputs found

    Mixing-Performance Evaluation of a Multiple Dilution Microfluidic Chip for a Human Serum Dilution Process

    Get PDF
    This paper is aimed to propose a numerically designed multiple dilution microfluidic chip that can simultaneously deliver several serum dilutions in parallel. The passive mixing scheme is selected for dilution and achieved by the serpentine mixing channel in which Dean vortices are induced to increase the contact area and time for better diffusion. The mixing performance at the exit of this dilution chip is numerically evaluated using five commonly-used mixing indices with the goal that the homogeneity of the mixture over the exit cross-sectional area of the mixing channel must be greater than 93.319% to fulfill the six-sigma quality control

    Diagnosis of feline filariasis assisted by a novel semi-automated microfluidic device in combination with high resolution melting real-time PCR

    No full text
    Abstract Background The diagnosis of filariasis traditionally relies on the detection of circulating microfilariae (mf) using Giemsa-stained thick blood smears. This approach has several limitations. We developed a semi-automated microfluidic device to improve and simplify the detection of filarial nematodes. Methods The efficiency and repeatability of the microfluidic device was evaluated. Human EDTA blood samples were ‘spiked’ with B. malayi mf at high, moderate, and low levels, and subsequently tested 10 times. The device was also used for a field survey of feline filariasis in 383 domesticated cats in an area of Narathiwat Province, Thailand, the endemic area of Brugia malayi infection. Results In the control blood arbitrarily spiked with mf, the high level, moderate level and low level mf-positive controls yielded coefficient variation (CV) values of 4.44, 4.16 and 4.66%, respectively, at the optimized flow rate of 6 µl/min. During the field survey of feline filariasis in Narathiwat Province, the device detected mf in the blood of 34 of 383 cats (8.9%) whereas mf were detected in 28 (7.3%) cats using the blood smear test. Genomic DNA was extracted from mf trapped in the device after which high-resolution melting (HRM) real-time PCR assay was carried out, which enabled the simultaneous diagnosis of filarial species. Among the 34 mf-positive samples, 12 were identified as B. malayi, 15 as Dirofilaria immitis and 7 as| D. repens. Conclusions We developed a semi-automated microfluidic device to detect mf of filarial parasites that could be used to diagnose lymphatic filariasis in human populations. This novel device facilitates rapid, higher-throughput detection and identification of infection with filariae in blood samples
    corecore