679 research outputs found

    Silicon Burning II: Quasi-Equilibrium and Explosive Burning

    Full text link
    Having examined the application of quasi-equilibrium to hydrostatic silicon burning in Paper I of this series, Hix & Thielemann (1996), we now turn our attention to explosive silicon burning. Previous authors have shown that for material which is heated to high temperature by a passing shock and then cooled by adiabatic expansion, the results can be divided into three broad categories; \emph{incomplete burning}, \emph{normal freezeout} and \emph{α\alpha-rich freezeout}, with the outcome depending on the temperature, density and cooling timescale. In all three cases, we find that the important abundances obey quasi-equilibrium for temperatures greater than approximately 3 GK, with relatively little nucleosynthesis occurring following the breakdown of quasi-equilibrium. We will show that quasi-equilibrium provides better abundance estimates than global nuclear statistical equilibrium, even for normal freezeout and particularly for α\alpha-rich freezeout. We will also examine the accuracy with which the final nuclear abundances can be estimated from quasi-equilibrium.Comment: 27 pages, including 15 inline figures. LaTeX 2e with aaspp4 and graphicx packages. Accepted to Ap

    James W. Truran (1940–2022)

    Get PDF
    Truran made far-reaching contributions to the theory of nuclear reactions, stellar nucleosynthesis, big bang nucleosynthesis, stellar abundances, solar system formation, galaxy formation and galactic chemical evolution

    Nucleosynthesis in O-Ne-Mg Supernovae

    Get PDF
    We have studied detailed nucleosynthesis in the shocked surface layers of an Oxygen-Neon-Magnesium core collapse supernova with an eye to determining if the conditions are suitable for r process nucleosynthesis. We find no such conditions in an unmodified model, but do find overproduction of N=50 nuclei (previously seen in early neutron-rich neutrino winds) in amounts that, if ejected, would pose serious problems for galactic chemical evolution.Comment: 12 pages, 1 figure, to be published in Astrophysical Journal Letter

    Structure of Pairs in Heavy Weakly-Bound Nuclei

    Get PDF
    We study the structure of nucleon pairs within a simple model consisting of a square well in three dimensions and a delta-function residual interaction between two weakly-bound particles at the Fermi surface. We include the continuum by enclosing the entire system in a large spherical box. To a good approximation, the continuum can be replaced by a small set of optimally-determined resonance states, suggesting that in many nuclei far from stability it may be possible to incorporate continuum effects within traditional shell-model based approximations.Comment: REVTEX format, 9 pages, 2 figures, 2 table

    Strange matter in core-collapse supernovae

    Full text link
    We discuss the possible impact of strange quark matter on the evolution of core-collapse supernovae with emphasis on low critical densities for the quark-hadron phase transition. For such cases the hot proto-neutron star can collapse to a more compact hybrid star configuration hundreds of milliseconds after core-bounce. The collapse triggers the formation of a second shock wave. The latter leads to a successful supernova explosion and leaves an imprint on the neutrino signal. These dynamical features are discussed with respect to their compatibility with recent neutron star mass measurements which indicate a stiff high density nuclear matter equation of state.Comment: 8 pages, 3 figures, Invited talk at the "Strangeness in Quark Matter" conference, 18-24 September 2011, Polish Academy of Arts and Sciences, Cracow, Polan

    Pushing 1D CCSNe to explosions: model and SN 1987A

    Full text link
    We report on a method, PUSH, for triggering core-collapse supernova explosions of massive stars in spherical symmetry. We explore basic explosion properties and calibrate PUSH such that the observables of SN1987A are reproduced. Our simulations are based on the general relativistic hydrodynamics code AGILE combined with the detailed neutrino transport scheme IDSA for electron neutrinos and ALS for the muon and tau neutrinos. To trigger explosions in the otherwise non-exploding simulations, we rely on the neutrino-driven mechanism. The PUSH method locally increases the energy deposition in the gain region through energy deposition by the heavy neutrino flavors. Our setup allows us to model the explosion for several seconds after core bounce. We explore the progenitor range 18-21M⊙_{\odot}. Our studies reveal a distinction between high compactness (HC) and low compactness (LC) progenitor models, where LC models tend to explore earlier, with a lower explosion energy, and with a lower remnant mass. HC models are needed to obtain explosion energies around 1 Bethe, as observed for SN1987A. However, all the models with sufficiently high explosion energy overproduce 56^{56}Ni. We conclude that fallback is needed to reproduce the observed nucleosynthesis yields. The nucleosynthesis yields of 57−58^{57-58}Ni depend sensitively on the electron fraction and on the location of the mass cut with respect to the initial shell structure of the progenitor star. We identify a progenitor and a suitable set of PUSH parameters that fit the explosion properties of SN1987A when assuming 0.1M⊙_{\odot} of fallback. We predict a neutron star with a gravitational mass of 1.50M⊙_{\odot}. We find correlations between explosion properties and the compactness of the progenitor model in the explored progenitors. However, a more complete analysis will require the exploration of a larger set of progenitors with PUSH.Comment: revised version as accepted by ApJ (results unchanged, text modified for clarification, a few references added); 26 pages, 20 figure

    On three topical aspects of the N=28 isotonic chain

    Get PDF
    The evolution of single-particle orbits along the N=28 isotonic chain is studied within the framework of a relativistic mean-field approximation. We focus on three topical aspects of the N=28 chain: (a) the emergence of a new magic number at Z=14; (b) the possible erosion of the N=28 shell; and (c) the weakening of the spin-orbit splitting among low-j neutron orbits. The present model supports the emergence of a robust Z=14 subshell gap in 48Ca, that persists as one reaches the neutron-rich isotone 42Si. Yet the proton removal from 48Ca results in a significant erosion of the N=28 shell in 42Si. Finally, the removal of s1/2 protons from 48Ca causes a ~50% reduction of the spin-orbit splitting among neutron p-orbitals in 42Si.Comment: 12 pages with 5 color figure
    • 

    corecore