8,284 research outputs found

    Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    Full text link
    In the present contribution we review basic mathematical results for three physical systems involving self-organising solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e., time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different system. First, we discuss the linear stability of homogeneous steady states, i.e., flat films; and second the systematics of non-trivial steady states, i.e., drop/hole states for dewetting films and quantum dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing to the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly not related physical systems mathematically, but does as well allow to discuss model extensions in a more unified way

    Coarsening modes of clusters of aggregating particles

    Get PDF
    There are two modes by which clusters of aggregating particles can coalesce: The clusters can merge either (i) by the Ostwald ripening process in which particles diffuse from one cluster to the other whilst the cluster centres remain stationary, or (ii) by means of a cluster translation mode, in which the clusters move towards each other and join. To understand in detail the interplay between these different modes, we study a model system of hard particles with an additional attraction between them. The particles diffuse along narrow channels with smooth or periodically corrugated walls, so that the system may be treated as one-dimensional. When the attraction between the particles is strong enough, they aggregate to form clusters. The channel potential influences whether clusters can move easily or not through the system and can prevent cluster motion. We use Dynamical Density Functional theory to study the dynamics of the aggregation process, focusing in particular on the coalescence of two equal size clusters. As long as the particle hard-core diameter is non-zero, we find that the coalescence process can be halted by a sufficiently strong corrugation potential. The period of the potential determines the size of the final stable clusters. For the case of smooth channel walls, we demonstrate that there is a cross-over in the dominance of the two different coarsening modes, that depends on the strength of the attraction between particles, the cluster sizes and the separation distance between clusters

    Modelling the evaporation of thin films of colloidal suspensions using Dynamical Density Functional Theory

    Get PDF
    Recent experiments have shown that various structures may be formed during the evaporative dewetting of thin films of colloidal suspensions. Nano-particle deposits of strongly branched `flower-like', labyrinthine and network structures are observed. They are caused by the different transport processes and the rich phase behaviour of the system. We develop a model for the system, based on a dynamical density functional theory, which reproduces these structures. The model is employed to determine the influences of the solvent evaporation and of the diffusion of the colloidal particles and of the liquid over the surface. Finally, we investigate the conditions needed for `liquid-particle' phase separation to occur and discuss its effect on the self-organised nano-structures

    Dynamical model for the formation of patterned deposits at receding contact lines

    Get PDF
    We describe the formation of deposition patterns that are observed in many different experiments where a three-phase contact line of a volatile nanoparticle suspension or polymer solution recedes. A dynamical model based on a long-wave approximation predicts the deposition of irregular and regular line patterns due to self-organised pinning-depinning cycles corresponding to a stick-slip motion of the contact line. We analyze how the line pattern properties depend on the evaporation rate and solute concentration

    Liquid transport generated by a flashing field-induced wettability ratchet

    Get PDF
    We develop and analyze a model for ratchet-driven macroscopic transport of a continuous phase. The transport relies on a field-induced dewetting-spreading cycle of a liquid film with a free surface based on a switchable, spatially asymmetric, periodic interaction of the liquid-gas interface and the substrate. The concept is exemplified using an evolution equation for a dielectric liquid film under an inhomogeneous voltage. We analyse the influence of the various phases of the ratchet cycle on the transport properties. Conditions for maximal transport and the efficiency of transport under load are discussed.Comment: 10 pages, 5 figure

    Localized states in the conserved Swift-Hohenberg equation with cubic nonlinearity

    Get PDF
    The conserved Swift-Hohenberg equation with cubic nonlinearity provides the simplest microscopic description of the thermodynamic transition from a fluid state to a crystalline state. The resulting phase field crystal model describes a variety of spatially localized structures, in addition to different spatially extended periodic structures. The location of these structures in the temperature versus mean order parameter plane is determined using a combination of numerical continuation in one dimension and direct numerical simulation in two and three dimensions. Localized states are found in the region of thermodynamic coexistence between the homogeneous and structured phases, and may lie outside of the binodal for these states. The results are related to the phenomenon of slanted snaking but take the form of standard homoclinic snaking when the mean order parameter is plotted as a function of the chemical potential, and are expected to carry over to related models with a conserved order parameter.Comment: 40 pages, 13 figure

    Solidification in soft-core fluids: disordered solids from fast solidification fronts

    Get PDF
    Using dynamical density functional theory we calculate the speed of solidification fronts advancing into a quenched two-dimensional model fluid of soft-core particles. We find that solidification fronts can advance via two different mechanisms, depending on the depth of the quench. For shallow quenches, the front propagation is via a nonlinear mechanism. For deep quenches, front propagation is governed by a linear mechanism and in this regime we are able to determine the front speed via a marginal stability analysis. We find that the density modulations generated behind the advancing front have a characteristic scale that differs from the wavelength of the density modulation in thermodynamic equilibrium, i.e., the spacing between the crystal planes in an equilibrium crystal. This leads to the subsequent development of disorder in the solids that are formed. For the one-component fluid, the particles are able to rearrange to form a well-ordered crystal, with few defects. However, solidification fronts in a binary mixture exhibiting crystalline phases with square and hexagonal ordering generate solids that are unable to rearrange after the passage of the solidification front and a significant amount of disorder remains in the system.Comment: 18 pages, 14 fig

    Bifurcation analysis of the behavior of partially wetting liquids on a rotating cylinder

    Get PDF
    We discuss the behavior of partially wetting liquids on a rotating cylinder using a model that takes into account the effects of gravity, viscosity, rotation, surface tension and wettability. Such a system can be considered as a prototype for many other systems where the interplay of spatial heterogeneity and a lateral driving force in the proximity of a first- or second-order phase transition results in intricate behavior. So does a partially wetting drop on a rotating cylinder undergo a depinning transition as the rotation speed is increased, whereas for ideally wetting liquids the behavior \bfuwe{only changes quantitatively. We analyze the bifurcations that occur when the rotation speed is increased for several values of the equilibrium contact angle of the partially wetting liquids. This allows us to discuss how the entire bifurcation structure and the flow behavior it encodes changes with changing wettability. We employ various numerical continuation techniques that allow us to track stable/unstable steady and time-periodic film and drop thickness profiles. We support our findings by time-dependent numerical simulations and asymptotic analyses of steady and time-periodic profiles for large rotation numbers
    • …
    corecore