254 research outputs found

    Mass conserved elementary kinetics is sufficient for the existence of a non-equilibrium steady state concentration

    Get PDF
    Living systems are forced away from thermodynamic equilibrium by exchange of mass and energy with their environment. In order to model a biochemical reaction network in a non-equilibrium state one requires a mathematical formulation to mimic this forcing. We provide a general formulation to force an arbitrary large kinetic model in a manner that is still consistent with the existence of a non-equilibrium steady state. We can guarantee the existence of a non-equilibrium steady state assuming only two conditions; that every reaction is mass balanced and that continuous kinetic reaction rate laws never lead to a negative molecule concentration. These conditions can be verified in polynomial time and are flexible enough to permit one to force a system away from equilibrium. In an expository biochemical example we show how a reversible, mass balanced perpetual reaction, with thermodynamically infeasible kinetic parameters, can be used to perpetually force a kinetic model of anaerobic glycolysis in a manner consistent with the existence of a steady state. Easily testable existence conditions are foundational for efforts to reliably compute non-equilibrium steady states in genome-scale biochemical kinetic models.Comment: 11 pages, 2 figures (v2 is now placed in proper context of the excellent 1962 paper by James Wei entitled "Axiomatic treatment of chemical reaction systems". In addition, section 4, on "Utility of steady state existence theorem" has been expanded.

    MetaboTools: A comprehensive toolbox for analysis of genome-scale metabolic models

    Get PDF
    Metabolomic data sets provide a direct read-out of cellular phenotypes and are increasingly generated to study biological questions. Our previous work revealed the potential of analyzing extracellular metabolomic data in the context of the metabolic model using constraint-based modeling. Through this work, which consists of a protocol, a toolbox, and tutorials of two use cases, we make our methods available to the broader scientific community. The protocol describes, in a step-wise manner, the workflow of data integration and computational analysis. The MetaboTools comprise the Matlab code required to complete the workflow described in the protocol. Tutorials explain the computational steps for integration of two different data sets and demonstrate a comprehensive set of methods for the computational analysis of metabolic models and stratification thereof into different phenotypes. The presented workflow supports integrative analysis of multiple omics data sets. Importantly, all analysis tools can be applied to metabolic models without performing the entire workflow. Taken together, this protocol constitutes a comprehensive guide to the intra-model analysis of extracellular metabolomic data and a resource offering a broad set of computational analysis tools for a wide biomedical and non-biomedical research community

    A community-driven global reconstruction of human metabolism

    Get PDF
    Multiple models of human metabolism have been reconstructed, but each represents only a subset of our knowledge. Here we describe Recon 2, a community-driven, consensus 'metabolic reconstruction', which is the most comprehensive representation of human metabolism that is applicable to computational modeling. Compared with its predecessors, the reconstruction has improved topological and functional features, including ~2× more reactions and ~1.7× more unique metabolites. Using Recon 2 we predicted changes in metabolite biomarkers for 49 inborn errors of metabolism with 77% accuracy when compared to experimental data. Mapping metabolomic data and drug information onto Recon 2 demonstrates its potential for integrating and analyzing diverse data types. Using protein expression data, we automatically generated a compendium of 65 cell type–specific models, providing a basis for manual curation or investigation of cell-specific metabolic properties. Recon 2 will facilitate many future biomedical studies and is freely available at http://humanmetabolism.org/

    Comparative genomic analysis of the human gut microbiome reveals a broad distribution of metabolic pathways for the degradation of host-synthetized mucin glycans

    Get PDF
    The colonic mucus layer is a dynamic and complex structure formed by secreted and transmembrane mucins, which are high-molecular-weight and heavily glycosylated proteins. Colonic mucus consists of a loose outer layer and a dense epithelium-attached layer. The outer layer is inhabited by various representatives of the human gut microbiota (HGM). Glycans of the colonic mucus can be used by the HGM as a source of carbon and energy when dietary fibers are not sufficiently available. Here, we analyzed 397 individual HGM genomes to identify pathways for the cleavage of host-synthetized mucin glycans to monosaccharides as well as for the catabolism of the derived monosaccharides. Our key results are as follows: (i) Genes for the cleavage of mucin glycans were found in 86% of the analyzed genomes, whereas genes for the catabolism of derived monosaccharides were found in 89% of the analyzed genomes. (ii) Comparative genomic analysis identified four alternative forms of the monosaccharide-catabolizing enzymes and four alternative forms of monosaccharide transporters. (iii) Eighty-five percent of the analyzed genomes may be involved in exchange pathways for the monosaccharides derived from cleaved mucin glycans. (iv) The analyzed genomes demonstrated different abilities to degrade known mucin glycans. Generally, the ability to degrade at least one type of mucin glycan was predicted for 81% of the analyzed genomes. (v) Eighty-two percent of the analyzed genomes can form mutualistic pairs that are able to degrade mucin glycans and are not degradable by any of the paired organisms alone. Taken together, these findings provide further insight into the inter-microbial communications of the HGM as well as into host-HGM interactions.Comment: 28 pages, 5 figure

    Conditions for duality between fluxes and concentrations in biochemical networks

    Get PDF
    Mathematical and computational modelling of biochemical networks is often done in terms of either the concentrations of molecular species or the fluxes of biochemical reactions. When is mathematical modelling from either perspective equivalent to the other? Mathematical duality translates concepts, theorems or mathematical structures into other concepts, theorems or structures, in a one-to-one manner. We present a novel stoichiometric condition that is necessary and sufficient for duality between unidirectional fluxes and concentrations. Our numerical experiments, with computational models derived from a range of genome-scale biochemical networks, suggest that this flux-concentration duality is a pervasive property of biochemical networks. We also provide a combinatorial characterisation that is sufficient to ensure flux-concentration duality. That is, for every two disjoint sets of molecular species, there is at least one reaction complex that involves species from only one of the two sets. When unidirectional fluxes and molecular species concentrations are dual vectors, this implies that the behaviour of the corresponding biochemical network can be described entirely in terms of either concentrations or unidirectional fluxes

    A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory

    Get PDF
    BACKGROUND: Pseudomonas putida is the best studied pollutant degradative bacteria and is harnessed by industrial biotechnology to synthesize fine chemicals. Since the publication of P. putida KT2440's genome, some in silico analyses of its metabolic and biotechnology capacities have been published. However, global understanding of the capabilities of P. putida KT2440 requires the construction of a metabolic model that enables the integration of classical experimental data along with genomic and high-throughput data. The constraint-based reconstruction and analysis (COBRA) approach has been successfully used to build and analyze in silico genome-scale metabolic reconstructions. RESULTS: We present a genome-scale reconstruction of P. putida KT2440's metabolism, iJN746, which was constructed based on genomic, biochemical, and physiological information. This manually-curated reconstruction accounts for 746 genes, 950 reactions, and 911 metabolites. iJN746 captures biotechnologically relevant pathways, including polyhydroxyalkanoate synthesis and catabolic pathways of aromatic compounds (e.g., toluene, benzoate, phenylacetate, nicotinate), not described in other metabolic reconstructions or biochemical databases. The predictive potential of iJN746 was validated using experimental data including growth performance and gene deletion studies. Furthermore, in silico growth on toluene was found to be oxygen-limited, suggesting the existence of oxygen-efficient pathways not yet annotated in P. putida's genome. Moreover, we evaluated the production efficiency of polyhydroxyalkanoates from various carbon sources and found fatty acids as the most prominent candidates, as expected. CONCLUSION: Here we presented the first genome-scale reconstruction of P. putida, a biotechnologically interesting all-surrounder. Taken together, this work illustrates the utility of iJN746 as i) a knowledge-base, ii) a discovery tool, and iii) an engineering platform to explore P. putida's potential in bioremediation and bioplastic production

    Durability of Transcatheter Heart Valves: Standardized Definitions and Available Data

    Get PDF
    Transcatheter aortic valve replacement is a well-established alternative to surgical aortic valve replacement in high-risk patients with severe symptomatic aortic stenosis. Currently, this technique is shifting towards younger patient groups with intermediate- and low-risk profile, which raises the question about long-term durability. Despite acceptable results up to 5 years, little is currently known about valve performance beyond 5 years. Since valve deterioration, thrombosis and endocarditis seem to be the main factors affecting valve durability, precise and widely accepted definitions of these parameters were stated by the European Association of Percutaneous Cardiovascular Interventions (EAPCI) in 2017, followed by the Valve in Valve International Data (VIVID) group definitions in 2018 and the Valve Academic Research Consortium 3 (VARC-3) definitions in 2021. Until the introduction of these definitions, interstudy comparisons were difficult due to missing uniformity. Since the release of these recommendations, an increasing number of studies have reported their data on long-term durability using these new criteria. The aim of the present article is to discuss the current definitions on bioprosthetic valve durability, and to summarize the available data on long-term durability of transcatheter aortic valves
    • …
    corecore