403 research outputs found
High dynamic range imaging with a single-mode pupil remapping system : a self-calibration algorithm for redundant interferometric arrays
The correction of the influence of phase corrugation in the pupil plane is a
fundamental issue in achieving high dynamic range imaging. In this paper, we
investigate an instrumental setup which consists in applying interferometric
techniques on a single telescope, by filtering and dividing the pupil with an
array of single-mode fibers. We developed a new algorithm, which makes use of
the fact that we have a redundant interferometric array, to completely
disentangle the astronomical object from the atmospheric perturbations (phase
and scintillation). This self-calibrating algorithm can also be applied to any
- diluted or not - redundant interferometric setup. On an 8 meter telescope
observing at a wavelength of 630 nm, our simulations show that a single mode
pupil remapping system could achieve, at a few resolution elements from the
central star, a raw dynamic range up to 10^6; depending on the brightness of
the source. The self calibration algorithm proved to be very efficient,
allowing image reconstruction of faint sources (mag = 15) even though the
signal-to-noise ratio of individual spatial frequencies are of the order of
0.1. We finally note that the instrument could be more sensitive by combining
this setup with an adaptive optics system. The dynamic range would however be
limited by the noise of the small, high frequency, displacements of the
deformable mirror.Comment: 11 pages, 7 figures. Accepted for publication in MNRA
Non-parametric reconstruction of distribution functions from observed galactic discs
A general inversion technique for the recovery of the underlying distribution function for observed galactic discs is presented and illustrated. Under the assumption that these discs are axisymmetric and thin, the proposed method yields a unique distribution compatible with all the observables available. The derivation may be carried out from the measurement of the azimuthal velocity distribution arising from positioning the slit of a spectrograph along the major axis of the galaxy. More generally, it may account for the simultaneous measurements of velocity distributions corresponding to slits presenting arbitrary orientations with respect to the major axis. The approach is non-parametric, i.e. it does not rely on a particular algebraic model for the distribution function. Special care is taken to account for the fraction of counter-rotating stars, which strongly affects the stability of the disc. An optimization algorithm is devised — generalizing the work of Skilling &38; Bryan — to carry this truly two-dimensional ill-conditioned inversion efficiently. The performance of the overall inversion technique with respect to the noise level and truncation in the data set is investigated with simulated data. Reliable results are obtained up to a mean signal-to-noise ratio of 5, and when measurements are available up to 4 Re. A discussion of the residual biases involved in non-parametric inversions is presented. The prospects of application of the algorithm to observed galaxies and other inversion problems are discusse
Probing magnetic fields with multi-frequency polarized synchrotron emission
We investigate the problem of probing the local spatial structure of the
magnetic field of the interstellar medium using multi-frequency polarized maps
of the synchrotron emission at radio wavelengths. We focus in this paper on the
three-dimensional reconstruction of the largest scales of the magnetic field,
relying on the internal depolarization (due to differential Faraday rotation)
of the emitting medium as a function of electromagnetic frequency. We argue
that multi-band spectroscopy in the radio wavelengths, developed in the context
of high-redshift extragalactic HI lines, can be a very useful probe of the 3D
magnetic field structure of our Galaxy when combined with a Maximum A
Posteriori reconstruction technique. When starting from a fair approximation of
the magnetic field, we are able to recover the true one by using a linearized
version of the corresponding inverse problem. The spectral analysis of this
problem allows us to specify the best sampling strategy in electromagnetic
frequency and predicts a spatially anisotropic distribution of posterior
errors. The reconstruction method is illustrated for reference fields extracted
from realistic magneto-hydrodynamical simulations
Restoration of Hyperspectral Astronomical Data with Spectrally Varying Blur
This book is a collection of 19 articles which reflect the courses given at the Collège de France/Summer school “Reconstruction d'images − Applications astrophysiques“ held in Nice and Fréjus, France, from June 18 to 22, 2012. The articles presented in this volume address emerging concepts and methods that are useful in the complex process of improving our knowledge of the celestial objects, including Earth
Stellar Content from high resolution galactic spectra via Maximum A Posteriori
This paper describes STECMAP (STEllar Content via Maximum A Posteriori), a
flexible, non-parametric inversion method for the interpretation of the
integrated light spectra of galaxies, based on synthetic spectra of single
stellar populations (SSPs). We focus on the recovery of a galaxy's star
formation history and stellar age-metallicity relation. We use the high
resolution SSPs produced by PEGASE-HR to quantify the informational content of
the wavelength range 4000 - 6800 Angstroms.
A detailed investigation of the properties of the corresponding simplified
linear problem is performed using singular value decomposition. It turns out to
be a powerful tool for explaining and predicting the behaviour of the
inversion. We provide means of quantifying the fundamental limitations of the
problem considering the intrinsic properties of the SSPs in the spectral range
of interest, as well as the noise in these models and in the data.
We performed a systematic simulation campaign and found that, when the time
elapsed between two bursts of star formation is larger than 0.8 dex, the
properties of each episode can be constrained with a precision of 0.04 dex in
age and 0.02 dex in metallicity from high quality data (R=10 000,
signal-to-noise ratio SNR=100 per pixel), not taking model errors into account.
The described methods and error estimates will be useful in the design and in
the analysis of extragalactic spectroscopic surveys.Comment: 31 pages, 23 figures, accepted for publication in MNRA
Image reconstruction in optical interferometry: Benchmarking the regularization
With the advent of infrared long-baseline interferometers with more than two
telescopes, both the size and the completeness of interferometric data sets
have significantly increased, allowing images based on models with no a priori
assumptions to be reconstructed. Our main objective is to analyze the multiple
parameters of the image reconstruction process with particular attention to the
regularization term and the study of their behavior in different situations.
The secondary goal is to derive practical rules for the users. Using the
Multi-aperture image Reconstruction Algorithm (MiRA), we performed multiple
systematic tests, analyzing 11 regularization terms commonly used. The tests
are made on different astrophysical objects, different (u,v) plane coverages
and several signal-to-noise ratios to determine the minimal configuration
needed to reconstruct an image. We establish a methodology and we introduce the
mean-square errors (MSE) to discuss the results. From the ~24000 simulations
performed for the benchmarking of image reconstruction with MiRA, we are able
to classify the different regularizations in the context of the observations.
We find typical values of the regularization weight. A minimal (u,v) coverage
is required to reconstruct an acceptable image, whereas no limits are found for
the studied values of the signal-to-noise ratio. We also show that
super-resolution can be achieved with increasing performance with the (u,v)
coverage filling. Using image reconstruction with a sufficient (u,v) coverage
is shown to be reliable. The choice of the main parameters of the
reconstruction is tightly constrained. We recommend that efforts to develop
interferometric infrastructures should first concentrate on the number of
telescopes to combine, and secondly on improving the accuracy and sensitivity
of the arrays.Comment: 15 pages, 16 figures; accepted in A&
Resolving asymmetries along the pulsation cycle of the Mira star X Hya
The mass-loss process in Mira stars probably occurs in an asymmetric way
where dust can form in inhomogeneous circumstellar molecular clumps. Following
asymmetries along the pulsation cycle can give us clues about these mass-loss
processes. We imaged the Mira star X Hya and its environnement at different
epochs to follow the evolution of the morphology in the continuum and in the
molecular bands. We observed X Hya with AMBER in J-H-K at low resolution at two
epochs. We modelled squared visibilities with geometrical and physical models.
We also present imaging reconstruction results obtained with MiRA and based on
the physical a priori images. We report on the angular scale change of X Hya
between the two epochs. 1D CODEX profiles allowed us to understand and model
the spectral variation of squared visibilities and constrain the stellar
parameters. Reconstructed model-dependent images enabled us to reproduce
closure phase signals and the azimuthal dependence of squared visibilities.
They show evidence for material inhomogeneities located in the immediate
environment of the star.Comment: Accepted for publication in A&A, 17 pages, 16 figure
The Pulsation of Chi Cygni Imaged by Optical Interferometry; a Novel Technique to Derive Distance and Mass of Mira Stars
We present infrared interferometric imaging of the S-type Mira star Chi
Cygni. The object was observed at four different epochs in 2005-2006 with the
IOTA optical interferometer (H band). Images show up to 40% variation in the
stellar diameter, as well as significant changes in the limb darkening and
stellar inhomogeneities. Model fitting gave precise time-dependent values of
the stellar diameter, and reveals presence and displacement of a warm molecular
layer. The star radius, corrected for limb darkening, has a mean value of 12.1
mas and shows a 5.1mas amplitude pulsation. Minimum diameter was observed at
phase 0.94+/-0.01. Maximum temperature was observed several days later at phase
1.02+/-0.02. We also show that combining the angular acceleration of the
molecular layer with CO (Delta v = 3) radial velocity measurements yields a
5.9+/-1.5 mas parallax. The constant acceleration of the CO molecules -- during
80% of the pulsation cycle -- lead us to argument for a free-falling layer. The
acceleration is compatible with a gravitational field produced by a
2.1(+1.5/-0.7) solar mass star. This last value is in agreement with
fundamental mode pulsator models. We foresee increased development of
techniques consisting in combining radial velocity with interferometric angular
measurements, ultimately allowing total mapping of the speed, density, and
position of the diverse species in pulsation driven atmospheres.Comment: 36 pages, accepted in Ap
Milli-arcsecond images of the Herbig Ae star HD 163296
The very close environments of young stars are the hosts of fundamental
physical processes, such as planet formation, star-disk interactions, mass
accretion, and ejection. The complex morphological structure of these
environments has been confirmed by the now quite rich data sets obtained for a
few objects by near-infrared long-baseline interferometry. We gathered numerous
interferometric measurements for the young star HD163296 with various
interferometers (VLTI, IOTA, KeckI and CHARA), allowing for the first time an
image independent of any a priori model to be reconstructed. Using the
Multi-aperture image Reconstruction Algorithm (MiRA), we reconstruct images of
HD 163296 in the H and K bands. We compare these images with reconstructed
images obtained from simulated data using a physical model of the environment
of HD 163296. We obtain model-independent and -band images of the
surroundings of HD 163296. The images present several significant features that
we can relate to an inclined asymmetric flared disk around HD 163296 with the
strongest intensity at about 4-5 mas. Because of the incomplete spatial
frequency coverage, we cannot state whether each of them individually is
peculiar in any way. For the first time, milli-arcsecond images of the
environment of a young star are produced. These images confirm that the
morphology of the close environment of young stars is more complex than the
simple models used in the literature so far.Comment: 11 pages, 10 figures, accepted A&A pape
- …