26 research outputs found

    EphB3 limits the expansion of neural progenitor cells in the subventricular zone by regulating p53 during homeostasis and following traumatic brain injury

    No full text
    Ephrins and Eph receptor(s) have recently been implicated in regulating neurogenesis in the adult subventricular zone (SVZ) and rostral migratory stream. Here, we examined the role of ephrinB3-EphB3 signaling in mediating the SVZ response to traumatic brain injury (TBI). Analysis of EphB3 expression showed colocalization with glial fibrillary acidic protein-positive neural stem progenitor cells (NSPCs) and doublecortin-positive neuroblasts, whereas ephrinB3 was expressed outside the neurogenic region. TBI resulted in a significant reduction in EphB3 expression, which coincided with enhanced NSPC survival and proliferation at 3 and 7 days postinjury. Analysis of mice lacking either ephrinB3 (ephrinB3(-/-)) or EphB3 (EphB3(-/-)) showed a significant increase in bromodeoxyuridine (BrdU) incorporation and Ki67 immunoreactivity in the SVZ. Interestingly, cell death was dissimilar between knockout mice, where cell death was reduced in EphB3(-/-) but increased in ephrinB3(-/-) mice. Lateral ventricle infusion of soluble preclustered ephrinB3-Fc reversed the proliferative and cell death defects in ephrinB3(-/-) but not EphB3(-/-) mice and prevented TBI-induced proliferation in wild-type NSPCs. Coincidently, tumor suppressor p53 expression was increased following EphB3 stimulation and is reduced in the absence of either EphB3 or ephrinB3. Furthermore, pharmacological inhibition and siRNA knockdown of p53-attenuated ephrinB3-Fc-mediated growth suppression while having no effect on cell death in cultured NSPCs. These data demonstrate that EphB3 signaling suppresses NSPC proliferation in a p53-dependent manner, induces cell death in the absence of ligand stimulation and is transiently reduced in the SVZ to initiate the expansion and survival of endogenous adult NSPCs following TBI

    Cross-Talk and Subset Control of Microglia and Associated Myeloid Cells in Neurological Disorders

    No full text
    Neurological disorders are highly prevalent and often lead to chronic debilitating disease. Neuroinflammation is a major driver across the spectrum of disorders, and microglia are key mediators of this response, gaining wide acceptance as a druggable cell target. Moreover, clinical providers have limited ability to objectively quantify patient-specific changes in microglia status, which can be a predictor of illness and recovery. This necessitates the development of diagnostic biomarkers and imaging techniques to monitor microglia-mediated neuroinflammation in coordination with neurological outcomes. New insights into the polarization status of microglia have shed light on the regulation of disease progression and helped identify a modifiable target for therapeutics. Thus, the detection and monitoring of microglia activation through the inclusion of diagnostic biomarkers and imaging techniques will provide clinical tools to aid our understanding of the neurologic sequelae and improve long-term clinical care for patients. Recent achievements demonstrated by pre-clinical studies, using novel depletion and cell-targeted approaches as well as single-cell RNAseq, underscore the mechanistic players that coordinate microglial activation status and offer a future avenue for therapeutic intervention

    Activating hidden signals by mimicking cryptic sites in a synthetic extracellular matrix

    No full text
    Abstract Cryptic sites are short signaling peptides buried within the native extracellular matrix (ECM). Enzymatic cleavage of an ECM protein reveals these hidden peptide sequences, which interact with surface receptors to control cell behavior. Materials that mimic this dynamic interplay between cells and their surroundings via cryptic sites could enable application of this endogenous signaling phenomenon in synthetic ECM hydrogels. We demonstrate that depsipeptides (“switch peptides”) can undergo enzyme-triggered changes in their primary sequence, with proof-of-principle studies showing how trypsin-triggered primary sequence rearrangement forms the bioadhesive pentapeptide YIGSR. We then engineered cryptic site-mimetic synthetic ECM hydrogels that experienced a cell-initiated gain of bioactivity. Responding to the endothelial cell surface enzyme aminopeptidase N, the inert matrix transformed into an adhesive synthetic ECM capable of supporting endothelial cell growth. This modular system enables dynamic reciprocity in synthetic ECMs, reproducing the natural symbiosis between cells and their matrix through inclusion of tunable hidden signals

    Activation of NF- B in Schwann Cells Is Dispensable for Myelination In Vivo

    No full text
    Peripheral myelination is a dynamic process orchestrated by axons and Schwann cells. Although the signaling mechanisms governing myelination are not fully understood, NF-κB activation in Schwann cells has been implicated as a key regulator in vitro. Using a mouse model, we show that nuclear factor κB activation in Schwann cells is not required for myelination in vivo

    Neural progenitors proliferation is inhibited by EphB3 in the developing subventricular zone

    No full text
    The subventricular zone (SVZ) of the mammalian forebrain is a major source of multipotent stem cells during development, and contributes to neurogenesis throughout the lifespan of the organism. Several studies described molecules regulating adult neurogenesis, however, few of them have examined neurogenesis in the early postnatal period. Adult neurogenesis is regulated in part by ephrinB3 and its receptors, so we examined the role of EphB3 on neural stem/progenitor cells (NSPCs) proliferation in early postnatal development in the SVZ. To examine NSPCs proliferation, we used BrdU incorporation in both cultured NSPCs and neonatal gene-targeted knockout mice, as well as Ki67 immunostaining in EphB3(−/−) mice. We observed a significant increase in proliferation in cultured NSPCs derived from EphB3(−/−) mice and in the SVZ of EphB3(−/−) mice. These studies support an anti-proliferative role for EphB3 in regulating NSPCs numbers in the developing SVZ

    Activation of NF-κB in Schwann Cells Is Dispensable for Myelination In Vivo

    No full text
    Peripheral myelination is a dynamic process orchestrated by axons and Schwann cells. Although the signaling mechanisms governing myelination are not fully understood, NF-κB activation in Schwann cells has been implicated as a key regulator in vitro . Using a mouse model, we show that nuclear factor κB activation in Schwann cells is not required for myelination in vivo

    EphrinBs Regulate d-Serine Synthesis and Release in Astrocytes

    No full text
    There is growing evidence that astrocytes play critical roles in neuron-glial interactions at the synapse. Astrocytes are believed to regulate presynaptic and postsynaptic structures and functions, in part, by the release of gliotransmitters such as glutamate, ATP, and d -serine; however, little is known of how neurons and astrocytes communicate to regulate these processes. Here, we investigated a family of transmembrane proteins called ephrinBs and Eph receptors that are expressed in the synapse and are known to regulate synaptic transmission and plasticity. In addition to their presence on CA1 hippocampal neurons, we determined that ephrins and Eph receptors are also expressed on hippocampal astrocytes. Stimulation of hippocampal astrocytes with soluble ephrinB3, known to be expressed on CA1 postsynaptic dendrites, enhanced d -serine synthesis and release in culture. Conversely, ephrinB3 had no effect on d -serine release from astrocytes deficient in EphB3 and EphA4, which are the primary receptors for ephrinB3. Eph receptors mediate this response through interactions with PICK1 (protein interacting with C-kinase) and by dephosphorylating protein kinase C α to activate the conversion of l -serine to d -serine by serine racemase. These findings are supported in vivo , where reduced d -serine levels and synaptic transmissions are observed in the absence of EphB3 and EphA4. These data support a role for ephrins and Eph receptors in regulating astrocyte gliotransmitters, which may have important implications on synaptic transmission and plasticity
    corecore