9 research outputs found
Extracellular heat shock proteins in cell signaling
AbstractExtracellular stress proteins including heat shock proteins (Hsp) and glucose regulated proteins (Grp) are emerging as important mediators of intercellular signaling and transport. Release of such proteins from cells is triggered by physical trauma and behavioral stress as well as exposure to immunological “danger signals”. Stress protein release occurs both through physiological secretion mechanisms and during cell death by necrosis. After release into the extracellular fluid, Hsp or Grp may then bind to the surfaces of adjacent cells and initiate signal transduction cascades as well as the transport of cargo molecules such as antigenic peptides. In addition Hsp60 and hsp70 are able to enter the bloodstream and may possess the ability to act at distant sites in the body. Many of the effects of extracellular stress proteins are mediated through cell surface receptors. Such receptors include Toll Like Receptors 2 and 4, CD40, CD91, CCR5 and members of the scavenger receptor family such as LOX-1 and SREC-1. The possession of a wide range of receptors for the Hsp and Grp family permits binding to a diverse range of cells and the performance of complex multicellular functions particularly in immune cells and neurones
Recommended from our members
Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death
Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various in vitro and in vivo models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of l-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation.Chemistry and Chemical Biolog
Recommended from our members
Identification of Inhibitors of PvdQ, an Enzyme Involved in the Synthesis of the Siderophore Pyoverdine
Pseudomonas aeruginosa produces the peptide siderophore pyoverdine, which is used to acquire essential Fe3+ ions from the environment. PvdQ, an Ntn hydrolase, is required for the biosynthesis of pyoverdine. PvdQ knockout strains are not infectious in model systems, suggesting that disruption of siderophore production via PvdQ inhibition could be exploited as a target for novel antibacterial agents, by preventing cells from acquiring iron in the low iron environments of most biological settings. We have previously described a high-throughput screen to identify inhibitors of PvdQ that identified inhibitors with IC50 values of ∼100 μM. Here, we describe the discovery of ML318, a biaryl nitrile inhibitor of PvdQ acylase. ML318 inhibits PvdQ in vitro (IC50 = 20 nM) by binding in the acyl-binding site, as confirmed by the X-ray crystal structure of PvdQ bound to ML318. Additionally, the PvdQ inhibitor is active in a whole cell assay, preventing pyoverdine production and limiting the growth of P. aeruginosa under iron-limiting conditions
Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death
Elevation
of reactive oxygen species (ROS) levels has been observed
in many cancer cells relative to nontransformed cells, and recent
reports have suggested that small-molecule enhancers of ROS may selectively
kill cancer cells in various <i>in vitro</i> and <i>in vivo</i> models. We used a high-throughput screening approach
to identify several hundred small-molecule enhancers of ROS in a human
osteosarcoma cell line. A minority of these compounds diminished the
viability of cancer cell lines, indicating that ROS elevation by small
molecules is insufficient to induce death of cancer cell lines. Three
chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that
most strongly elevate markers of oxidative stress without causing
cell death and may be of use in a variety of cellular settings. For
example, combining nontoxic ROS-enhancing probes with nontoxic doses
of l-buthionine sulfoximine, an inhibitor of glutathione
synthesis previously studied in cancer patients, led to potent cell
death in more than 20 cases, suggesting that even nontoxic ROS-enhancing
treatments may warrant exploration in combination strategies. Additionally,
a few ROS-enhancing compounds that contain sites of electrophilicity,
including piperlongumine, show selective toxicity for transformed
cells over nontransformed cells in an engineered cell-line model of
tumorigenesis. These studies suggest that cancer cell lines are more
resilient to chemically induced increases in ROS levels than previously
thought and highlight electrophilicity as a property that may be more
closely associated with cancer-selective cell death than ROS elevation