9 research outputs found

    Extracellular heat shock proteins in cell signaling

    Get PDF
    AbstractExtracellular stress proteins including heat shock proteins (Hsp) and glucose regulated proteins (Grp) are emerging as important mediators of intercellular signaling and transport. Release of such proteins from cells is triggered by physical trauma and behavioral stress as well as exposure to immunological “danger signals”. Stress protein release occurs both through physiological secretion mechanisms and during cell death by necrosis. After release into the extracellular fluid, Hsp or Grp may then bind to the surfaces of adjacent cells and initiate signal transduction cascades as well as the transport of cargo molecules such as antigenic peptides. In addition Hsp60 and hsp70 are able to enter the bloodstream and may possess the ability to act at distant sites in the body. Many of the effects of extracellular stress proteins are mediated through cell surface receptors. Such receptors include Toll Like Receptors 2 and 4, CD40, CD91, CCR5 and members of the scavenger receptor family such as LOX-1 and SREC-1. The possession of a wide range of receptors for the Hsp and Grp family permits binding to a diverse range of cells and the performance of complex multicellular functions particularly in immune cells and neurones

    Discovery of Small-Molecule Enhancers of Reactive Oxygen Species That are Nontoxic or Cause Genotype-Selective Cell Death

    No full text
    Elevation of reactive oxygen species (ROS) levels has been observed in many cancer cells relative to nontransformed cells, and recent reports have suggested that small-molecule enhancers of ROS may selectively kill cancer cells in various <i>in vitro</i> and <i>in vivo</i> models. We used a high-throughput screening approach to identify several hundred small-molecule enhancers of ROS in a human osteosarcoma cell line. A minority of these compounds diminished the viability of cancer cell lines, indicating that ROS elevation by small molecules is insufficient to induce death of cancer cell lines. Three chemical probes (BRD5459, BRD56491, BRD9092) are highlighted that most strongly elevate markers of oxidative stress without causing cell death and may be of use in a variety of cellular settings. For example, combining nontoxic ROS-enhancing probes with nontoxic doses of l-buthionine sulfoximine, an inhibitor of glutathione synthesis previously studied in cancer patients, led to potent cell death in more than 20 cases, suggesting that even nontoxic ROS-enhancing treatments may warrant exploration in combination strategies. Additionally, a few ROS-enhancing compounds that contain sites of electrophilicity, including piperlongumine, show selective toxicity for transformed cells over nontransformed cells in an engineered cell-line model of tumorigenesis. These studies suggest that cancer cell lines are more resilient to chemically induced increases in ROS levels than previously thought and highlight electrophilicity as a property that may be more closely associated with cancer-selective cell death than ROS elevation
    corecore