11 research outputs found

    Mutations in the fusion peptide and heptad repeat regions of the Newcastle disease virus fusion protein block fusion

    Get PDF
    Nonconservative mutations were introduced by site-specific mutagenesis into the fusion peptide and the adjacent heptad repeat region of the fusion protein of Newcastle disease virus in order to determine the role of both regions in the fusion activity of the protein. Mutations in both regions that allowed for proper folding and intracellular transport of the protein blocked the fusion activity of the protein when assayed in the presence of the hemagglutinin-neuraminidase protein

    Effect of Cleavage Mutants on Syncytium Formation Directed by the Wild-Type Fusion Protein of Newcastle Disease Virus

    Get PDF
    The effects of Newcastle disease virus (NDV) fusion (F) glycoprotein cleavage mutants on the cleavage and syncytium-forming activity of the wild-type F protein were examined. F protein cleavage mutants were made by altering amino acids in the furin recognition region (amino acids 112 to 116) in the F protein of a virulent strain of NDV. Four mutants were made: Q114P replaced the glutamine residue with proline; K115G replaced lysine with glycine; double mutant K115G, R113G replaced both a lysine and an arginine with glycine residues; and a triple mutant, R112G, K115G, F117L, replaced three amino acids to mimic the sequence found in avirulent strains of NDV. All mutants except Q114P were cleavage negative and fusion negative. However, addition of exogenous trypsin cleaved all mutant F proteins and activated fusion. As expected for an oligomeric protein, the fusion-negative mutants had a dominant negative phenotype: cotransfection of wild-type and mutant F protein cDNAs resulted in an inhibition of syncytium formation. The presence of the mutant F protein did not inhibit cleavage of the wild-type protein. Furthermore, evidence is presented that suggests that the mutant protein and the wild-type protein formed heterooligomers. By measuring the syncytium-forming activity of the wild-type protein at various ratios of expression of mutant and wild-type protein, results were obtained that are most consistent with the notion that the size of the functionally active NDV F protein in these assays is a single oligomer, likely a trimer. That a larger oligomer, containing a mix of both wild-type and mutant F proteins, has partial activity cannot, however, be ruled out

    A Single Amino Acid Change in the Newcastle Disease Virus Fusion Protein Alters the Requirement for HN Protein in Fusion

    Get PDF
    The role of a leucine heptad repeat motif between amino acids 268 and 289 in the structure and function of the Newcastle disease virus (NDV) F protein was explored by introducing single point mutations into the F gene cDNA. The mutations affected either folding of the protein or the fusion activity of the protein. Two mutations, L275A and L282A, likely interfered with folding of the molecule since these proteins were not proteolytically cleaved, were minimally expressed at the cell surface, and formed aggregates. L268A mutant protein was cleaved and expressed at the cell surface although the protein migrated slightly slower than wild type on polyacrylamide gels, suggesting an alteration in conformation or processing. L268A protein was fusion inactive in the presence or absence of HN protein expression. Mutant L289A protein was expressed at the cell surface and proteolytically cleaved at better than wild-type levels. Most importantly, this protein mediated syncytium formation in the absence of HN protein expression although HN protein enhanced fusion activity. These results show that a single amino acid change in the F(1) portion of the NDV F protein can alter the stringent requirement for HN protein expression in syncytium formation

    Mutational analysis of the leucine zipper motif in the Newcastle disease virus fusion protein

    No full text
    The paramyxovirus fusion proteins have a highly conserved leucine zipper motif immediately upstream from the transmembrane domain of the F1 subunit (R. Buckland and F. Wild, Nature [London] 338:547, 1989). To determine the role of the conserved leucines in the oligomeric structure and biological activity of the Newcastle disease virus (NDV) fusion protein, the heptadic leucines at amino acids 481, 488, and 495 were changed individually and in combination to an alanine residue. While single amino acid changes had little effect on fusion, substitution of two or three leucine residues abolished the fusogenic activity of the protein, although cell surface expression of the mutants was higher than that of the wild-type protein. Substitution of all three leucine residues with alanine did not alter the size of the fusion protein oligomer as determined by sedimentation in sucrose gradients. Furthermore, deletion of the C-terminal 91 amino acids, including the leucine zipper motif and transmembrane domain, resulted in secretion of an oligomeric polypeptide. These results indicate that the conserved leucines are not necessary for oligomer formation but are required for the fusogenic ability of the protein. When the polar face of the potential alpha helix was altered by nonconservative changes of serine to alanine (position 473), glutamic acid to lysine or alanine (position 482), asparagine to lysine (position 485), or aspartic acid to alanine (position 489), the fusogenic ability of the protein was not significantly disrupted. In addition, a double mutant (E482A,D489A) which removed negative charges along one side of the helix had negligible effects on fusion activity

    Carbohydrate modifications of the NDV fusion protein heptad repeat domains influence maturation and fusion activity

    Get PDF
    The amino acid sequence of the fusion protein (F) of Newcastle disease virus (NDV) has six potential N-linked glycosylation addition sites, five in the ectodomain (at amino acids 85, 191, 366, 447, and 471) and one in the cytoplasmic domain at amino acid 542. Two of these sites, at positions 191 and 471, are within heptad repeat (HR) domains implicated in fusion activity of the protein. To determine glycosylation site usage as well as the function of added carbohydrate, each site was mutated by substituting alanine for the serine or threonine in the addition signal. The sizes of the resulting mutant proteins, expressed in Cos cells, showed that sites at amino acids 85, 191, 366, and 471 are used. This conclusion was verified by comparing sizes of mutant proteins missing all four used sites with that of unglycosylated F protein. The role of each added oligosaccharide in the structure and function of the F protein was determined by characterizing stability, proteolytic cleavage, surface expression, and fusion activity of the mutant proteins. Elimination of the site in F(2) at amino acid 85 had the most detrimental effect, decreasing cleavage, stability, and surface expression as well as fusion activity. The protein missing the site at 191, at the carboxyl terminus of the HR1 domain, also showed modestly reduced surface expression and negligible fusion activity. Proteins missing sites at 366 and 471 (within HR2) were expressed at nearly wild-type levels but had decreased fusion activity. These results suggest that all carbohydrate side chains, individually, influence the folding or activity of the NDV F protein. Importantly, carbohydrate modifications of the HR domains impact fusion activity of the protein

    The role of the amino terminus of F1 of the Newcastle disease virus fusion protein in cleavage and fusion

    No full text
    Phenylalanine is the amino acid at the amino terminus of the F1 protein of all paramyxovirus fusion proteins with the exception of the avirulent strains of Newcastle disease virus, which have a leucine residue in this position (Toyoda et al. (1989) Virology 169, 273-282). To explore the role of this phenylalanine in the fusion activity of the protein, this residue, amino acid 117 in the fusion protein sequence, was changed to leucine (F117L) or to glycine (F117G) by site-specific mutagenesis while maintaining the cleavage site sequence of virulent strains of NDV. While both wild-type and the F117G protein were proteolytically cleaved and F1 was detected, the F117L protein was not cleaved. In the presence of the HN protein, both wild-type F and F117G proteins stimulated fusion, but the F117L protein was inactive in fusion. However, incubation in trypsin activated the fusion activity of the protein. Thus the phenylalanine at the amino terminus of the F1 component of the fusion protein is not required for the fusion activity of the protein. The presence of a leucine at this position blocks cleavage even though the cleavage site sequence is unchanged
    corecore