5 research outputs found

    Associations Between C-Reactive Protein, Insulin Sensitivity, and Resting Metabolic Rate in Adults: A Mediator Analysis

    Get PDF
    Objective: Long-term positive energy balance promotes the development of obesity, a main risk factor for type 2 diabetes mellitus (T2DM). While an association between increased resting metabolic rate (RMR) and insulin sensitivity (IS) was shown previously, the underlying mechanisms remain unclear. Aim of the mediator analysis was to investigate the role of inflammation within the association between RMR and IS.Methods: Anthropometric, clinical, and lifestyle data were collected according to standard operating procedures. RMR was measured using indirect calorimetry. Homeostasis model assessment for insulin resistance (HOMA-IR) was used as an IS parameter and C-reactive protein (CRP) was measured to represent the inflammatory status. Statistical analyses were performed using SPSS.Results: The analysis included 782 adults (517 females) with a mean age of 32.4 ± 12.0 years and a mean body mass index (BMI) of 24.6 ± 5.2 kg/m2. Regression analysis indicated a significant evidence for associations between RMR and HOMA-IR (ß = 39.3 ± 7.3 kcal/d; p ≤ 0.001) and CRP and HOMA-IR (ß = 0.5 ± 0.1; p ≤ 0.001) after adjustment for fat-free mass, sex, age, and study site. Results of the mediator analysis did not support the hypothesis that CRP is a mediator for the association between RMR and HOMA-IR. These results did not change after participant stratification according to sex or BMI.Conclusion: A significant evidence for an association between RMR and IS was shown in a large cohort. However, the inflammatory status, determined via CRP levels, was not a mediator within this association

    A Scientific Perspective of Personalised Gene-Based Dietary Recommendations for Weight Management

    No full text
    Various studies showed that a “one size fits all” dietary recommendation for weight management is questionable. For this reason, the focus increasingly falls on personalised nutrition. Although there is no precise and uniform definition of personalised nutrition, the inclusion of genetic variants for personalised dietary recommendations is more and more favoured, whereas scientific evidence for gene-based dietary recommendations is rather limited. The purpose of this article is to provide a science-based viewpoint on gene-based personalised nutrition and weight management. Most of the studies showed no clinical evidence for gene-based personalised nutrition. The Food4Me study, e.g., investigated four different groups of personalised dietary recommendations based on dietary guidelines, and physiological, clinical, or genetic parameters, and resulted in no difference in weight loss between the levels of personalisation. Furthermore, genetic direct-to-consumer (DTC) tests are widely spread by companies. Scientific organisations clearly point out that, to date, genetic DTC tests are without scientific evidence. To date, gene-based personalised nutrition is not yet applicable for the treatment of obesity. Nevertheless, personalised dietary recommendations on the genetic landscape of a person are an innovative and promising approach for the prevention and treatment of obesity. In the future, human intervention studies are necessary to prove the clinical evidence of gene-based dietary recommendations

    Association between Single Nucleotide Polymorphisms and Weight Reduction in Behavioural Interventions—A Pooled Analysis

    No full text
    Knowledge of the association between single nucleotide polymorphisms (SNPs) and weight loss is limited. The aim was to analyse whether selected obesity-associated SNPs within the fat mass and obesity-associated (FTO), transmembrane protein 18 (TMEM18), melanocortin-4 receptor (MC4R), SEC16 homolog B (SEC16B), and brain-derived neurotrophic factor (BDNF) gene are associated with anthropometric changes during behavioural intervention for weight loss. genetic and anthropometric data from 576 individuals with overweight and obesity from four lifestyle interventions were obtained. A genetic predisposition score (GPS) was calculated. Our results show that study participants had a mean age of 48.2 +/- 12.6 years and a mean baseline body mass index of 33.9 +/- 6.4 kg/m(2). Mean weight reduction after 12 months was -7.7 +/- 10.9 kg. After 12 months of intervention, the MC4R SNPs rs571312 and rs17782313 were significantly associated with a greater decrease in body weight and BMI (p = 0.012, p = 0.011, respectively). The investigated SNPs within the other four genetic loci showed no statistically significant association with changes in anthropometric parameters. The GPS showed no statistically significant association with weight reduction. In conclusion there was no consistent evidence for statistically significant associations of SNPs with anthropometric changes during a behavioural intervention. It seems that other factors play a more significant in weight management than the investigated SNPs
    corecore