78 research outputs found

    Field Performance of a Rapid Test to Detect Progressive, Regressive, and Abortive Feline Leukemia Virus Infections in Domestic Cats in Australia and Germany

    Full text link
    Different feline leukemia virus (FeLV) infection outcomes are possible in cats following natural exposure, such as progressive infections (persistent viremia), regressive infections (transient or no viremia followed by proviral persistence) and abortive infections (presence of only antibodies). Laboratory-based testing is currently required for categorization of infection outcomes in cats. The aim of this study was to evaluate the field performance of a novel, rapid, combination point-of-care (PoC) test kit commercially available in Europe (v-RetroFel®Ag/Ab; 2020–2021 version) to determine different FeLV infection outcomes by concurrent detection of FeLV antigen (p27) and antibodies against FeLV transmembrane envelope protein (p15E). A secondary aim was to evaluate the performance of the same test kit (v-RetroFel®FIV) to determine positive/negative feline immunodeficiency virus (FIV) infection status by the detection of antibodies to FIV capsid protein (p24) and transmembrane glycoprotein (gp40). Two cohorts of domestic cats were recruited and tested with v-RetroFel® using plasma or serum, including cats in Australia (n = 200) and cats in Germany (n = 170). Results from p27 antigen PoC testing, proviral DNA PCR, and neutralizing antibody testing or testing for antibodies against non-glycosylated surface unit envelope protein (p45) were used to assign cats to groups according to different FeLV infection outcomes. Testing with a laboratory-based FeLV p15E antibody ELISA was also performed for comparison. In the first cohort, v-RetroFel®Ag/Ab correctly identified 89% (109/122) FeLV-unexposed cats and 91% (21/23) progressive infections, but no regressive (0/23) or abortive (0/32) infections. In the second cohort, v-RetroFel®Ag/Ab correctly identified 94% (148/158) FeLV-unexposed cats and 100% (4/4) progressive infections, but no regressive (0/2) and only 17% (1/6) abortive infections. There was test agreement between v-RetroFel®Ab and the p15E laboratory ELISA in 58.9% of samples. As a secondary outcome of this study, the sensitivity and specificity of v-RetroFel®FIV testing in cohort 1 were 94.7% (18/19) and 98.3% (178/181), and in cohort 2, 30.0% (3/10) and 100.0% (160/160), respectively. Prior history of FIV vaccination did not produce any false-positive FIV results. In conclusion, v-RetroFel®Ag/Ab (2020–2021 version) was unable to accurately determine different FeLV infection outcomes in the field. Improvements of the test prior to application to field samples are required

    Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy

    Get PDF
    Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at −20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200–5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305–3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78–616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment’s effectiveness and identify potential relapses at an early stage

    Serological and Molecular Investigation of SARS-CoV-2 in Horses and Cattle in Switzerland from 2020 to 2022

    Get PDF
    Horses and cattle have shown low susceptibility to SARS-CoV-2, and there is no evidence of experimental intraspecies transmission. Nonetheless, seropositive horses in the US and seropositive cattle in Germany and Italy have been reported. The current study investigated the prevalence of antibodies against SARS-CoV-2 in horses and cattle in Switzerland. In total, 1940 serum and plasma samples from 1110 horses and 830 cattle were screened with a species-specific ELISA based on the SARS-CoV-2 receptor-binding domain (RBD) and, in the case of suspect positive results, a surrogate virus neutralization test (sVNT) was used to demonstrate the neutralizing activity of the antibodies. Further confirmation of suspect positive samples was performed using either a pseudotype-based virus neutralization assay (PVNA; horses) or an indirect immunofluorescence test (IFA; cattle). The animals were sampled between February 2020 and December 2022. Additionally, in total, 486 bronchoalveolar lavage (BAL), oropharyngeal, nasal and rectal swab samples from horses and cattle were analyzed for the presence of SARS-CoV-2 RNA via reverse transcriptase quantitative polymerase chain reaction (RT-qPCR). Six horses (0.5%; 95% CI: 0.2–1.2%) were suspect positive via RBD-ELISA, and neutralizing antibodies were detected in two of them via confirmatory sVNT and PVNA tests. In the PVNA, the highest titers were measured against the Alpha and Delta SARS-CoV-2 variants. Fifteen cattle (1.8%; 95% CI: 1.0–3.0%) were suspect positive in RBD-ELISA; 3 of them had SARS-CoV-2-specific neutralizing antibodies in sVNT and 4 of the 15 were confirmed to be positive via IFA. All tested samples were RT-qPCR-negative. The results support the hypotheses that the prevalence of SARS-CoV-2 infections in horses and cattle in Switzerland was low up to the end of 2022

    Enhanced convective heat transfer using graphene dispersed nanofluids

    Get PDF
    Nanofluids are having wide area of application in electronic and cooling industry. In the present work, hydrogen exfoliated graphene (HEG) dispersed deionized (DI) water, and ethylene glycol (EG) based nanofluids were developed. Further, thermal conductivity and heat transfer properties of these nanofluids were systematically investigated. HEG was synthesized by exfoliating graphite oxide in H2 atmosphere at 200°C. The nanofluids were prepared by dispersing functionalized HEG (f-HEG) in DI water and EG without the use of any surfactant. HEG and f-HEG were characterized by powder X-ray diffractometry, electron microscopy, Raman and FTIR spectroscopy. Thermal and electrical conductivities of f-HEG dispersed DI water and EG based nanofluids were measured for different volume fractions and at different temperatures. A 0.05% volume fraction of f-HEG dispersed DI water based nanofluid shows an enhancement in thermal conductivity of about 16% at 25°C and 75% at 50°C. The enhancement in Nusselts number for these nanofluids is more than that of thermal conductivity

    Hemodynamic parameters to guide fluid therapy

    Get PDF
    The clinical determination of the intravascular volume can be extremely difficult in critically ill and injured patients as well as those undergoing major surgery. This is problematic because fluid loading is considered the first step in the resuscitation of hemodynamically unstable patients. Yet, multiple studies have demonstrated that only approximately 50% of hemodynamically unstable patients in the intensive care unit and operating room respond to a fluid challenge. Whereas under-resuscitation results in inadequate organ perfusion, accumulating data suggest that over-resuscitation increases the morbidity and mortality of critically ill patients. Cardiac filling pressures, including the central venous pressure and pulmonary artery occlusion pressure, have been traditionally used to guide fluid management. However, studies performed during the past 30 years have demonstrated that cardiac filling pressures are unable to predict fluid responsiveness. During the past decade, a number of dynamic tests of volume responsiveness have been reported. These tests dynamically monitor the change in stroke volume after a maneuver that increases or decreases venous return (preload) and challenges the patients' Frank-Starling curve. These dynamic tests use the change in stroke volume during mechanical ventilation or after a passive leg raising maneuver to assess fluid responsiveness. The stroke volume is measured continuously and in real-time by minimally invasive or noninvasive technologies, including Doppler methods, pulse contour analysis, and bioreactance
    corecore