4 research outputs found
Antimicrobial Effects of a Lipophilic Fraction and Kaurenoic Acid Isolated from the Root Bark Extracts of Annona senegalensis
Root bark preparation of Annona senegalensis Pers. (Annonaceae) is used in Nigerian ethnomedicine for treatment of infectious diseases. Extraction of the A. senegalensis powdered root bark with methanol-methylene chloride (1 : 1) mixture yielded the methanol-methylene extract (MME) which was fractionated to obtain the ethyl acetate fraction (EF). The EF on further fractionation gave two active subfractions, F1 and F2. The F1 yielded a lipophilic oily liquid while F2 on purification, precipitated white crystalline compound, AS2. F1 was analyzed using GC-MS, while AS2 was characterized by proton NMR and X-ray crystallography. Antibacterial and antifungal studies were performed using agar-well-diffusion method with 0.5 McFarland standard and MICs calculated. GC-MS gave 6 major constituents: kaur-16-en-19-oic acid; 1-dodecanol; 1-naphthalenemethanol; 6,6-dimethyl-bicyclo[3.1.1]hept-2-ene-2-ethanol; 3,3-dimethyl-2-(3-methylbuta-1,3-dienyl)cyclohexane-1-methanol; 3-hydroxyandrostan-17-carboxylic acid. AS2 was found to be kaur-16-en-19-oic acid. The MICs of EF, F1, and AS2 against B. subtilis were 180, 60, and 30 μg/mL, respectively. AS2 exhibited activity against S. aureus with an MIC of 150 μg/mL, while F1 was active against P. aeruginosa with an MIC of 40 μg/mL. However, the extracts and AS2 exhibited no effects against Candida albicans and Aspergillus niger. Therefore, kaurenoic acid and the lipophilic fraction from A. senegalensis root bark exhibited potent antibacterial activity
Comparative Study of the Antioxidant Effects of Metformin, Glibenclamide, and Repaglinide in Alloxan-Induced Diabetic Rats
Diabetes mellitus is one of the serious global health problems affecting a significant proportion of both developed and developing countries. Overproduction of free radicals and oxidative stress has been associated with the development of diabetic complications. In the present study, the antioxidant effects of metformin (MET), glibenclamide (GLI), and repaglinide (REP) were evaluated in alloxan-induced diabetic rats. The findings from this study may possibly help in understanding the efficacy of these standard drugs in managing the complications arising from diabetes mellitus (DM). Alloxan (130 mg/kg BW) was administered as a single dose to induce diabetes. Four (4) groups of rats (n=6) were used; group 1 served as diabetic control while groups 2, 3, and 4 were the diabetic test groups that received MET (25 mg/kg), GLI (2.5 mg/kg), and REP (0.5 mg/kg), respectively. The result of the study showed significant (p<0.05) improvement in the altered antioxidant enzymes (SOD, CAT) and GSH concentration in diabetic treated rats compared with the diabetic control group. MET and REP produced significant effect on the MDA concentration while GLI showed insignificant reduction in the MDA concentration compared with the diabetic control. Findings from this study suggest that the administration of MET, GLI, and REP exerts significant antioxidant effects in alloxan-induced diabetic rats, thus contributing to the protective effect against oxidative stress-induced damage during diabetic complications