2 research outputs found

    Microbiome in Chronic Kidney Disease

    No full text
    The gut microbiome is a complex collection of microorganisms with discrete characteristics and activities. Its important role is not restricted to food digestion and metabolism, but extends to the evolution, activation and function of the immune system. Several factors, such as mode of birth, diet, medication, ageing and chronic inflammation, can modify the intestinal microbiota. Chronic kidney disease (CKD) seems to have a direct and unique effect, as increased urea levels result in alteration of the gut microbiome, leading to overproduction of its metabolites. Therefore, potentially noxious microbial uremic toxins, which have predominantly renal clearance, including p-cresyl sulfate, indoxyl sulfate and N-oxide of trimethylamine [Trimethylamine-N-Oxide (TMAO)], accumulate in human’s body, and are responsible not only for the clinical implications of CKD, but also for the progression of renal failure itself. Certain changes in gut microbiome are observed in patients with end stage renal disease (ESRD), either when undergoing hemodialysis or after kidney transplantation. The purpose of this review is to summarize the changes of gut microbiome and the protein bound uremic toxins which are observed in CKD and in different kidney replacement strategies. In addition, we attempt to review the connection between microbiome, clinical implications and immune response in CKD

    Immunosenescence and Immune Exhaustion Are Associated with Levels of Protein-Bound Uremic Toxins in Patients on Hemodialysis

    No full text
    Background: The accumulation of protein-bound uremic toxins (PBUTs) in chronic kidney disease may affect patients’ immune status. The aim of the study was to evaluate their potential impacts on lymphocyte alterations in patients on hemodialysis (HD). Methods: The plasma levels of PBUTs were assessed in 54 patients on HD and 31 healthy individuals, using ultra-performance liquid chromatography. The results correlated with the senescent and exhausted status of lymphocytes, based on certain surface molecules, analyzed by flow cytometry. Results: The plasma levels of PBUTs were significantly increased in the patients on HD compared with the healthy controls. The patients with residual kidney function had reduced hippuric acid (HA) levels, total (p = 0.03) and free (p = 0.04), and free IxS levels (p = 0.02). The total and free HA levels correlated negatively with less differentiated subpopulations, CD4+CD45RA+CD31+ (p = 0.037 and p = 0.027), CD8+CD28+CD57− (p = 0.01, p = 0.01), and naïve B cells (CD19+IgD+CD27−) (p = 0.04, p = 0.03). Both the total and the free pCS levels correlated positively with exhausted CD4 cells, p = 0.02 and p = 0.01, respectively. A multivariate analysis showed that IxS and age were the main independent parameters implicated in the reduction intotal CD4 and B lymphocytes and their naïve and early differentiated subsets. Conclusions: Increased PBUTs levels are associated with immune disturbances of patients on HD, HA, and IxS in the immunosenescent and pCS in the immunoexhaustion alterations
    corecore