51 research outputs found

    Brain network for small-scale features in active touch

    Full text link
    An important tactile function is the active detection of small-scale features, such as edges or asperities, which depends on fine hand motor control. Using a resting-state fMRI paradigm, we sought to identify the functional connectivity of the brain network engaged in mapping tactile inputs to and from regions engaged in motor preparation and planning during active touch. Human participants actively located small-scale tactile features that were rendered by a computer-controlled tactile display. To induce rapid perceptual learning, the contrast between the target and the surround was reduced whenever a criterion level of success was achieved, thereby raising the task difficulty. Multiple cortical and subcortical neural connections within a parietal-cerebellar-frontal network were identified by correlating behavioral performance with changes in functional connectivity. These cortical areas reflected perceptual, cognitive, and attention-based processes required to detect and use small-scale tactile features for hand dexterity

    Effects of a robot-assisted training of grasp and pronation/supination in chronic stroke: a pilot study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rehabilitation of hand function is challenging, and only few studies have investigated robot-assisted rehabilitation focusing on distal joints of the upper limb. This paper investigates the feasibility of using the <it>HapticKnob</it>, a table-top end-effector device, for robot-assisted rehabilitation of grasping and forearm pronation/supination, two important functions for activities of daily living involving the hand, and which are often impaired in chronic stroke patients. It evaluates the effectiveness of this device for improving hand function and the transfer of improvement to arm function.</p> <p>Methods</p> <p>A single group of fifteen chronic stroke patients with impaired arm and hand functions (Fugl-Meyer motor assessment scale (FM) 10-45/66) participated in a 6-week 3-hours/week rehabilitation program with the <it>HapticKnob</it>. Outcome measures consisted primarily of the FM and Motricity Index (MI) and their respective subsections related to distal and proximal arm function, and were assessed at the beginning, end of treatment and in a 6-weeks follow-up.</p> <p>Results</p> <p>Thirteen subjects successfully completed robot-assisted therapy, with significantly improved hand and arm motor functions, demonstrated by an average 3.00 points increase on the FM and 4.55 on the MI at the completion of the therapy (4.85 FM and 6.84 MI six weeks post-therapy). Improvements were observed both in distal and proximal components of the clinical scales at the completion of the study (2.00 FM wrist/hand, 2.55 FM shoulder/elbow, 2.23 MI hand and 4.23 MI shoulder/elbow). In addition, improvements in hand function were observed, as measured by the Motor Assessment Scale, grip force, and a decrease in arm muscle spasticity. These results were confirmed by motion data collected by the robot.</p> <p>Conclusions</p> <p>The results of this study show the feasibility of this robot-assisted therapy with patients presenting a large range of impairment levels. A significant homogeneous improvement in both hand and arm function was observed, which was maintained 6 weeks after end of the therapy.</p

    Characterization of multijoint finger stiffness: dependence on finger posture and force direction

    Get PDF
    Abstract — The two-dimensional static stiffness of the index finger was measured with the interphalangeal joints in flexed and extended postures. The stiffness of the relaxed finger was compared with the stiffness when voluntary force was exerted in different directions. The finger stiffness was found to be anisotropic, with the direction of greatest stiffness being approx-imately parallel to the proximal phalange of the finger. This direction was relatively unaffected by finger posture or direction of finger force. Finger stiffness was more anisotropic when the in-terphalangeal joints were extended than flexed. The stiffness was most anisotropic when the interphalangeal joints were extended and force was being exerted in the direction of pointing, while it was least anisotropic when the interphalangeal joints were flexed and force was being exerted in directions normally associated with pinching and tapping actions. The stiffness of the individual finger joints was computed and the relation between stiffness and joint torque was examined. Previous studies, which examined single finger joints in isolation, had found that joint stiffness varied in a linear fashion with net joint torque. In contrast, we did not find a monotonic relation between joint stiffness and net joint torque, which we attributed to the need to vary the amount of cocontraction of antagonistic muscles when controlling the direction of finger force. Index Terms—Extension, finger, flexion, stiffness ellipse. I

    Postural responses to multidirectional perturbations to the hand during stance

    Get PDF
    Humans are easily able to maintain their balance while applying force with their hands to move or stabilize objects. Based on Newton\u27s laws, the applied force must be counteracted by ground reaction force (GRF) to maintain balance. However, because the GRF is partitioned between the two legs there is no unique solution. Furthermore, central nervous system (CNS) can employ an infinite number of muscle activation patterns to achieve ground reaction force (GRF) vectors needed to satisfy both the task-level goal and balance. This study examines the postural response when hand position must remain stable as an external force is applied in different directions during normal stance. We investigated whether the CNS uses an invariant strategy to compensate for forces acting in different directions
    corecore