309 research outputs found

    Ring Dark Solitons and Vortex Necklaces in Bose-Einstein Condensates

    Get PDF
    We introduce the concept of ring dark solitons in Bose-Einstein condensates. We show that relatively shallow rings are not subject to the snake instability, but a deeper ring splits into a robust ring-like cluster of vortex pairs, which performs oscillations in the radial and azimuthal directions, following the dynamics of the original ring soliton.Comment: Phys. Rev. Lett., in pres

    Experiments on Multidimensional Solitons

    Full text link
    This article presents an overview of experimental efforts in recent years related to multidimensional solitons in Bose-Einstein condensates. We discuss the techniques used to generate and observe multidimensional nonlinear waves in Bose-Einstein condensates with repulsive interactions. We further summarize observations of planar soliton fronts undergoing the snake instability, the formation of vortex rings, and the emergence of hybrid structures.Comment: review paper, to appear as Chapter 5b in "Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment," edited by P. G. Kevrekidis, D. J. Frantzeskakis, and R. Carretero-Gonzalez (Springer-Verlag

    Dynamics of interacting dark soliton stripes

    Full text link
    In the present work we examine the statics and dynamics of multiple parallel dark soliton stripes in a two-dimensional Bose-Einstein condensate. Our principal goal is to study the effect of the interaction between the stripes on the transverse instability of the individual stripes. We use a recently developed adiabatic invariant formulation to derive a quasi-analytical prediction for the stripe equilibrium position and for the Bogoliubov-de Gennes spectrum of excitations of stationary stripes. The cases of two-, three- and four-stripe states are studied in detail. We subsequently test our predictions against numerical simulations of the full two-dimensional Gross-Pitaevskii equation. We find that the number of unstable eigenmodes increases as the number of stripes increases due to (unstable) relative motions between the stripes. Their corresponding growth rates do not significantly change, although for large chemical potentials, the larger the stripe number, the larger the maximal instability growth rate. The instability induced dynamics of multiple stripe states and their decay into vortices are also investigated.Comment: 13 pages, 11 figure

    Dark-in-Bright Solitons in Bose-Einstein Condensates with Attractive Interactions

    Get PDF
    We demonstrate a possibility to generate localized states in effectively one-dimensional Bose-Einstein condensates with a negative scattering length in the form of a dark soliton in the presence of an optical lattice (OL) and/or a parabolic magnetic trap. We connect such structures with twisted localized modes (TLMs) that were previously found in the discrete nonlinear Schr{\"o}dinger equation. Families of these structures are found as functions of the OL strength, tightness of the magnetic trap, and chemical potential, and their stability regions are identified. Stable bound states of two TLMs are also found. In the case when the TLMs are unstable, their evolution is investigated by means of direct simulations, demonstrating that they transform into large-amplitude fundamental solitons. An analytical approach is also developed, showing that two or several fundamental solitons, with the phase shift π\pi between adjacent ones, may form stable bound states, with parameters quite close to those of the TLMs revealed by simulations. TLM structures are found numerically and explained analytically also in the case when the OL is absent, the condensate being confined only by the magnetic trap.Comment: 13 pages, 7 figures, New Journal of Physics (in press

    Vortices in a Bose-Einstein condensate confined by an optical lattice

    Get PDF
    We investigate the dynamics of vortices in repulsive Bose-Einstein condensates in the presence of an optical lattice (OL) and a parabolic magnetic trap. The dynamics is sensitive to the phase of the OL potential relative to the magnetic trap, and depends less on the OL strength. For the cosinusoidal OL potential, a local minimum is generated at the trap's center, creating a stable equilibrium for the vortex, while in the case of the sinusoidal potential, the vortex is expelled from the center, demonstrating spiral motion. Cases where the vortex is created far from the trap's center are also studied, revealing slow outward-spiraling drift. Numerical results are explained in an analytical form by means of a variational approximation. Finally, motivated by a discrete model (which is tantamount to the case of the strong OL lattice), we present a novel type of vortex consisting of two pairs of anti-phase solitons.Comment: 10 pages, 6 figure

    Stability of dark solitons in a Bose-Einstein condensate trapped in an optical lattice

    Get PDF
    We investigate the stability of dark solitons (DSs) in an effectively one-dimensional Bose-Einstein condensate in the presence of the magnetic parabolic trap and an optical lattice (OL). The analysis is based on both the full Gross-Pitaevskii equation and its tight-binding approximation counterpart (discrete nonlinear Schr{\"o}dinger equation). We find that DSs are subject to weak instabilities with an onset of instability mainly governed by the period and amplitude of the OL. The instability, if present, sets in at large times and it is characterized by quasi-periodic oscillations of the DS about the minimum of the parabolic trap.Comment: Typo fixed in Eq. (1): cos^2 -> sin^

    Oscillations and interactions of dark and dark-bright solitons in Bose-Einstein condensates

    Full text link
    Solitons are among the most distinguishing fundamental excitations in a wide range of non-linear systems such as water in narrow channels, high speed optical communication, molecular biology and astrophysics. Stabilized by a balance between spreading and focusing, solitons are wavepackets, which share some exceptional generic features like form-stability and particle-like properties. Ultra-cold quantum gases represent very pure and well-controlled non-linear systems, therefore offering unique possibilities to study soliton dynamics. Here we report on the first observation of long-lived dark and dark-bright solitons with lifetimes of up to several seconds as well as their dynamics in highly stable optically trapped 87^{87}Rb Bose-Einstein condensates. In particular, our detailed studies of dark and dark-bright soliton oscillations reveal the particle-like nature of these collective excitations for the first time. In addition, we discuss the collision between these two types of solitary excitations in Bose-Einstein condensates.Comment: 9 pages, 4 figure

    A two-dimensional paradigm for symmetry breaking: the nonlinear Schrodinger equation with a four-well potential

    Get PDF
    We study the existence and stability of localized states in the two-dimensional (2D) nonlinear Schrodinger (NLS)/Gross-Pitaevskii equation with a symmetric four-well potential. Using a fourmode approximation, we are able to trace the parametric evolution of the trapped stationary modes, starting from the corresponding linear limits, and thus derive the complete bifurcation diagram for the families of these stationary modes. The predictions based on the four-mode decomposition are found to be in good agreement with the numerical results obtained from the NLS equation. Actually, the stability properties coincide with those suggested by the corresponding discrete model in the large-amplitude limit. The dynamics of the unstable modes is explored by means of direct simulations. Finally, while we present the full analysis for the case of the focusing nonlinearity, the bifurcation diagram for the defocusing case is briefly considered too.Comment: 11 pages, 10 figure

    Nonlinear Waves in Bose-Einstein Condensates: Physical Relevance and Mathematical Techniques

    Get PDF
    The aim of the present review is to introduce the reader to some of the physical notions and of the mathematical methods that are relevant to the study of nonlinear waves in Bose-Einstein Condensates (BECs). Upon introducing the general framework, we discuss the prototypical models that are relevant to this setting for different dimensions and different potentials confining the atoms. We analyze some of the model properties and explore their typical wave solutions (plane wave solutions, bright, dark, gap solitons, as well as vortices). We then offer a collection of mathematical methods that can be used to understand the existence, stability and dynamics of nonlinear waves in such BECs, either directly or starting from different types of limits (e.g., the linear or the nonlinear limit, or the discrete limit of the corresponding equation). Finally, we consider some special topics involving more recent developments, and experimental setups in which there is still considerable need for developing mathematical as well as computational tools.Comment: 69 pages, 10 figures, to appear in Nonlinearity, 2008. V2: new references added, fixed typo

    Stability and collapse of localized solutions of the controlled three-dimensional Gross-Pitaevskii equation

    Full text link
    On the basis of recent investigations, a newly developed analytical procedure is used for constructing a wide class of localized solutions of the controlled three-dimensional (3D) Gross-Pitaevskii equation (GPE) that governs the dynamics of Bose-Einstein condensates (BECs). The controlled 3D GPE is decomposed into a two-dimensional (2D) linear Schr\"{o}dinger equation and a one-dimensional (1D) nonlinear Schr\"{o}dinger equation, constrained by a variational condition for the controlling potential. Then, the above class of localized solutions are constructed as the product of the solutions of the transverse and longitudinal equations. On the basis of these exact 3D analytical solutions, a stability analysis is carried out, focusing our attention on the physical conditions for having collapsing or non-collapsing solutions.Comment: 21 pages, 14 figure
    corecore