18 research outputs found

    Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome

    Get PDF
    BackgroundSymptoms lasting longer than 12  weeks after severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection are called post-coronavirus disease (COVID) syndrome (PCS). The identification of new biomarkers that predict the occurrence or course of PCS in terms of a post-viral syndrome is vital. T-cell dysfunction, cytokine imbalance, and impaired autoimmunity have been reported in PCS. Nevertheless, there is still a lack of conclusive information on the underlying mechanisms due to, among other things, a lack of controlled study designs.MethodsHere, we conducted a prospective, controlled study to characterize the humoral and cellular immune response in unvaccinated patients with and without PCS following SARS-CoV-2 infection over 7 months and unexposed donors.ResultsPatients with PCS showed as early as 6 weeks and 7 months after symptom onset significantly increased frequencies of SARS-CoV-2-specific CD4+ and CD8+ T-cells secreting IFNγ, TNF, and expressing CD40L, as well as plasmacytoid dendritic cells (pDC) with an activated phenotype. Remarkably, the immunosuppressive counterparts type 1 regulatory T-cells (TR1: CD49b/LAG-3+) and IL-4 were more abundant in PCS+.ConclusionThis work describes immunological alterations between inflammation and immunosuppression in COVID-19 convalescents with and without PCS, which may provide potential directions for future epidemiological investigations and targeted treatments

    Split T Cell Tolerance against a Self/Tumor Antigen: Spontaneous CD4+ but Not CD8+ T Cell Responses against p53 in Cancer Patients and Healthy Donors

    Get PDF
    Analyses of NY-ESO-1-specific spontaneous immune responses in cancer patients revealed that antibody and both CD4+ and CD8+ T cell responses were induced together in cancer patients. To explore whether such integrated immune responses are also spontaneously induced for other tumor antigens, we have evaluated antibody and T cell responses against self/tumor antigen p53 in ovarian cancer patients and healthy individuals. We found that 21% (64/298) of ovarian cancer patients but no healthy donors showed specific IgG responses against wild-type p53 protein. While none of 12 patients with high titer p53 antibody showed spontaneous p53-specific CD8+ T cell responses following a single in vitro sensitization, significant p53-specific IFN-γ producing CD4+ T cells were detected in 6 patients. Surprisingly, similar levels of p53-specific CD4+ T cells but not CD8+ T cells were also detected in 5/10 seronegative cancer patients and 9/12 healthy donors. Importantly, p53-specific CD4+ T cells in healthy donors originated from a CD45RA− antigen-experienced T cell population and recognized naturally processed wild-type p53 protein. These results raise the possibility that p53-specific CD4+ T cells reflect abnormalities in p53 occurring in normal individuals and that they may play a role in processes of immunosurveillance or immunoregulation of p53-related neoplastic events

    A comparative analysis of remdesivir and other repurposed antivirals against SARS‐CoV‐2

    No full text
    Abstract The ongoing SARS‐CoV‐2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID‐19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID‐19. It is to date the only approved antiviral for treating COVID‐19. Here, we provide a mechanism and evidence‐based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS‐CoV‐2

    A comparative analysis of remdesivir and other repurposed antivirals against SARS-CoV-2

    No full text
    The ongoing SARS-CoV-2 pandemic stresses the need for effective antiviral drugs that can quickly be applied in order to reduce morbidity, mortality, and ideally viral transmission. By repurposing of broadly active antiviral drugs and compounds that are known to inhibit viral replication of related viruses, several advances could be made in the development of treatment strategies against COVID-19. The nucleoside analog remdesivir, which is known for its potent in vitro activity against Ebolavirus and other RNA viruses, was recently shown to reduce the time to recovery in patients with severe COVID-19. It is to date the only approved antiviral for treating COVID-19. Here, we provide a mechanism and evidence-based comparative review of remdesivir and other repurposed drugs with proven in vitro activity against SARS-CoV-2

    Landing CG on EARTH: A Case Study of Fine-Grained Multithreading on an Evolutionary Path

    No full text
    We report on our work in developing a fine-grained multithreaded solution for the communicationintensive Conjugate Gradient (CG) problem. In our recent work, we developed a simple yet efficient program for sparse matrix-vector multiply on a multithreaded system. This paper presents an effective mechanism for the reduction-broadcast phase, which is integrated with the sparse MVM, resulting in a scalable implementation of the complete CG application. Three major observations from our experiments on the EARTH multithreaded testbed are: (1) The scalability of our CG implementation is impressive, e.g., absolute speedup is 90 on 120 processors for the NAS CG class B input. (2) Our dataflow-style reductionbroadcast network based on fine-grain multithreading is twice as fast as a serial reduction scheme on the same system. (3) By slowing down the network by a factor of 2, no notable degradation of overall CG performance was observed. 1. Introduction Many existing or proposed parallel machin..
    corecore