17 research outputs found

    HER2 overexpression is a putative diagnostic and prognostic biomarker for late-stage colorectal cancer in North African patients

    Get PDF
    AIM: Colorectal cancer (CRC) is one of the leading cancers in the world. Even though its mortality and pathophysiology are well documented in the US and the European countries, it is seldom studied in North African population. Recent studies have shown link of HER2 overexpression in oesophageal and gastric cancers. The aim of this study is to assess the HER2 protein and mRNA expression and its correlation with tumor pathogenesis in Libyan CRC patients. METHODOLOGY: A total of 17 FFPE tissue blocks were collected from patients with primary CRC. The HER2 protein expression was assessed by immunohistochemistry and the mRNA expression was assessed using qRT-PCR. Survival analysis of the role of HER2 overexpression on rectal adenocarcinoma was carried out on additional 165 patients. RESULTS: From the CRC cohort, adenocarcinoma was found to be more frequent accounting for 88.2%, and 11.8% for mucinous adenocarcinomas. Almost 47% of the cases were positive for HER2 (score ≥ 2+) and about 50% adenocarcinoma cases with tumor grade II were positive for HER2. Moreover, 57.4% adenocarcinoma patients with grade-II tumor had undergone right hemicolectomy. Furthermore, significant correlation (p = 0.03) between the HER2 mRNA expression with the tumor grade was observed. In addition, poor overall all survival was observed with high HER2 expression in rectum adenocarcinoma. CONCLUSION: To our knowledge, this is the first study that HER2 overexpression correlates with more aggressive colorectal cancer in North African population. Our study shows that HER2 overexpression associates with right colon surgeries. Also, the correlation of mRNA and protein expression could warrant the implementation of a nationwide screening program for HER2 positivity in CRC patients. Taken together, stratifying patients according to HER2 expression can help in the diagnosis and prognosis of CRC patients from North African origin

    Titanium Particles Modulate Lymphocyte and Macrophage Polarization in Peri-Implant Gingival Tissues

    Get PDF
    Titanium dental implants are one of the modalities to replace missing teeth. The release of titanium particles from the implant’s surface may modulate the immune cells, resulting in implant failure. However, little is known about the immune microenvironment that plays a role in peri-implant inflammation as a consequence of titanium particles. In this study, the peri-implant gingival tissues were collected from patients with failed implants, successful implants and no implants, and then a whole transcriptome analysis was performed. The gene set enrichment analysis confirmed that macrophage M1/M2 polarization and lymphocyte proliferation were differentially expressed between the study groups. The functional clustering and pathway analysis of the differentially expressed genes between the failed implants and successful implants versus no implants revealed that the immune response pathways were the most common in both comparisons, implying the critical role of infiltrating immune cells in the peri-implant tissues. The H&E and IHC staining confirmed the presence of titanium particles and immune cells in the tissue samples, with an increase in the infiltration of lymphocytes and macrophages in the failed implant samples. The in vitro validation showed a significant increase in the level of IL-1β, IL-8 and IL-18 expression by macrophages. Our findings showed evidence that titanium particles modulate lymphocyte and macrophage polarization in peri-implant gingival tissues, which can help in the understanding of the imbalance in osteoblast–osteoclast activity and failure of dental implant osseointegration

    Azithromycin Differentially Alters TCR-Activated Helper T Cell Subset Phenotype and Effector Function

    Get PDF
    In addition to their antibiotic activities, azithromycin (AZM) exhibits anti-inflammatory effects in various respiratory diseases. One of the potent anti-inflammatory mechanisms is through inhibition of CD4+ helper T (Th) cell effector function. However, their impact on specific Th subset is obscure. Herein, we demonstrate the cellular basis of phenotypic and functional alterations associated with Th subsets following AZM treatment in vitro. Using well-characterized Th subset specific chemokine receptors, we report significant suppression of T cell receptor (TCR)-stimulated hyperactivated CCR4+CXCR3+ (Th0) expansion compared to CCR4-CXCR3+ (Th1-like) and CCR4+CXCR3- (Th2-like) cells. Interestingly, this effect was associated with diminished cell proliferation. Furthermore, AZM significantly inhibited the inflammatory cytokines IFN-γ and IL-4 production, CCR4 and CXCR3 receptor expression, and viability of Th0, Th1-like, and Th2-like subsets. Our findings suggest that AZM differentially affects TCR-activated Th subsets phenotype and function, and CCR4 and CXCR3 downregulation and suppressed Th0 subset expansion could potentially influence their trafficking and differentiation into cytokine-producing effector cells

    HER2 overexpression is a putative diagnostic and prognostic biomarker for late-stage colorectal cancer in North African patients

    Get PDF
    Aim: Colorectal cancer (CRC) is one of the leading cancers in the world. Even though its mortality and pathophysiology are well documented in the US and the European countries, it is seldom studied in North African population. Recent studies have shown link of HER2 overexpression in oesophageal and gastric cancers. The aim of this study is to assess the HER2 protein and mRNA expression and its correlation with tumor pathogenesis in Libyan CRC patients. Methodology: A total of 17 FFPE tissue blocks were collected from patients with primary CRC. The HER2 protein expression was assessed by immunohistochemistry and the mRNA expression was assessed using qRT-PCR. Survival analysis of the role of HER2 overexpression on rectal adenocarcinoma was carried out on additional 165 patients. Results: From the CRC cohort, adenocarcinoma was found to be more frequent accounting for 88.2%, and 11.8% for mucinous adenocarcinomas. Almost 47% of the cases were positive for HER2 (score >= 2+) and about 50% adenocarcinoma cases with tumor grade II were positive for HER2. Moreover, 57.4% adenocarcinoma patients with grade-II tumor had undergone right hemicolectomy. Furthermore, significant correlation (p = 0.03) between the HER2 mRNA expression with the tumor grade was observed. In addition, poor overall all survival was observed with high HER2 expression in rectum adenocarcinoma. Conclusion: To our knowledge, this is the first study that HER2 overexpression correlates with more aggressive colorectal cancer in North African population. Our study shows that HER2 overexpression associates with right colon surgeries. Also, the correlation of mRNA and protein expression could warrant the implementation of a nationwide screening program for HER2 positivity in CRC patients. Taken together, stratifying patients according to HER2 expression can help in the diagnosis and prognosis of CRC patients from North African origin

    Association of specific ACE2 and TMPRSS2 variants with circulatory cytokines of COVID-19 Emirati patients

    Get PDF
    IntroductionThe COVID-19 pandemic represented one of the most significant challenges to researchers and healthcare providers. Several factors determine the disease severity, whereas none alone can explain the tremendous variability. The Single nucleotide variants (SNVs) in angiotensin-converting enzyme-2 (ACE2) and transmembrane serine protease type-2 (TMPRSS2) genes affect the virus entry and are considered possible risk factors for COVID-19.MethodsWe compiled a panel of gene variants from both genes and used in-silico analysis to predict their significance. We performed biological validation to assess their capacity to alter the ACE2 interaction with the virus spike protein. Subsequently, we conducted a retrospective comparative genome analysis on those variants in the Emirati patients with different disease severity (total of 96) along with 69 healthy control subjects.ResultsOur results showed that the Emirati population lacks the variants that were previously reported as associated with disease severity, whereas a new variant in ACE2 “Chr X:g.15584534” was associated with disease severity specifically among female patients. In-silico analysis revealed that the new variant can determine the ACE2 gene transcription. Several cytokines (GM-CSF and IL-6) and chemokines (MCP-1/CCL2, IL-8/CXCL8, and IP-10/CXCL10) were markedly increased in COVID-19 patients with a significant correlation with disease severity. The newly reported genetic variant of ACE2 showed a positive correlation with CD40L, IL-1β, IL-2, IL-15, and IL-17A in COVID-19 patients.ConclusionWhereas COVID-19 represents now a past pandemic, our study underscores the importance of genetic factors specific to a population, which can influence both the susceptibility to viral infections and the level of severity; subsequently expected required preparedness in different areas of the world

    Population, genetic, and antigenic diversity of the apicomplexan Eimeria tenella and their relevance to vaccine development

    Get PDF
    The phylum Apicomplexa includes serious pathogens of humans and animals. Understanding the distribution and population structure of these protozoan parasites is of fundamental importance to explain disease epidemiology and develop sustainable controls. Predicting the likely efficacy and longevity of subunit vaccines in field populations relies on knowledge of relevant preexisting antigenic diversity, population structure, the likelihood of coinfection by genetically distinct strains, and the efficiency of cross-fertilization. All four of these factors have been investigated for Plasmodium species parasites, revealing both clonal and panmictic population structures with exceptional polymorphism associated with immunoprotective antigens such as apical membrane antigen 1 (AMA1). For the coccidian Toxoplasma gondii only genomic diversity and population structure have been defined in depth so far; for the closely related Eimeria species, all four variables are currently unknown. Using Eimeria tenella, a major cause of the enteric disease coccidiosis, which exerts a profound effect on chicken productivity and welfare, we determined population structure, genotype distribution, and likelihood of cross-fertilization during coinfection and also investigated the extent of naturally occurring antigenic diversity for the E. tenella AMA1 homolog. Using genome-wide Sequenom SNP-based haplotyping, targeted sequencing, and single-cell genotyping, we show that in this coccidian the functionality of EtAMA1 appears to outweigh immune evasion. This result is in direct contrast to the situation in Plasmodium and most likely is underpinned by the biology of the direct and acute coccidian life cycle in the definitive host

    Gasdermin D hypermethylation inhibits pyroptosis and LPS-induced IL-1β release from NK92 cells

    No full text
    Introduction: Although natural killer (NK) are major cells used to treat cancer patients, recent clinical trials showed that NK92 cells can be also used for the same purpose due to their high anti-tumor activity. Here, we examined whether these cells might be inflammatory due to the release of interleukin-1β (IL-1β), and whether the anti-inflammatory molecules dimethyl fumarate (DMF), or monomethyl fumarate (MMF) impair this activity. Methods: NK92 cells were examined for the synthesis and release of IL-1β utilizing RT-PCR and ELISA assay, respectively. The expression of hydroxy-carboxylic acid receptors (HCA)1, HCA2 and HCA3 was detected by immunoblotting, flow cytometry, immunofluorescence and RT-PCR assays. The activation of caspase-1 and Gasdermin D (GSDMD) was evaluated by immunoblot assay. Pyroptosis was demonstrated by immunofluorescence imaging. Expression of DNA methyltransferases (DNMTs) mRNA was determined by whole transcriptome and immunoblot analyses. Results: LPS-induced the release of IL-1β from NK92 cells, whereas DMF or MMF inhibited this induction. The effect of these drugs was due to inhibiting the conversion of procaspase-1 into active caspase-1. NK92 cells highly expressed GSDMD, a pyroptotic-mediated molecule. However, LPS induced the distribution of GSDMD into the cell membranes, corroborated with the presence of pyroptotic bodies, an activity that was inhibited by DMF or MMF. These molecule also inhibited the generation of GSDMD through DNMT-mediated hypermethylation of the promoter region of GSDMD gene. These results were supported by increased expression of DNMTs mRNA as determined by whole transcriptome analysis. Discussion: Our results are the first to show that NK92 cells utilize GSDMD pathway to release IL-1β. Further, DMF and MMF which were previously shown to enhance NK cell cytotoxicity, also inhibit the inflammatory effects of these cells, making them most suitable for treating cancer patients.</p

    Circulating microRNAs as potential biomarkers of early vascular damage in vitamin D deficiency, obese, and diabetic patients.

    No full text
    Vitamin D3 deficiency, obesity, and diabetes mellitus (DM) have been shown to increase the risk of cardiovascular diseases (CVDs). However, the early detection of vascular damage in those patients is still difficult to ascertain. MicroRNAs (miRNAs) are recognized to play a critical role in initiation and pathogenesis of vascular dysfunction. Herein, we aimed to identify circulating miRNA biomarkers of vascular dysfunction as early predictors of CVDs. We have recruited 23 middle-aged Emiratis patients with the following criteria: A healthy control group with vitamin D ≥ 20ng, and BMI 1.5) in high-risk patients for CVDs vs healthy controls. Collectively, our result indicates that four specific circulating miRNA signature, may be utilized as non-invasive, diagnostic and prognostic biomarkers for early vascular damage in patients suffering from vitamin D deficiency, obesity and DM

    Circulating microRNAs as potential biomarkers of early vascular damage in vitamin D deficiency, obese, and diabetic patients

    No full text
    Vitamin D3 deficiency, obesity, and diabetes mellitus (DM) have been shown to increase the risk of cardiovascular diseases (CVDs). However, the early detection of vascular damage in those patients is still difficult to ascertain. MicroRNAs (miRNAs) are recognized to play a critical role in initiation and pathogenesis of vascular dysfunction. Herein, we aimed to identify circulating miRNA biomarkers of vascular dysfunction as early predictors of CVDs. We have recruited 23 middle-aged Emiratis patients with the following criteria: A healthy control group with vitamin D ≥ 20ng, and BMI 1.5) in high-risk patients for CVDs vs healthy controls. Collectively, our result indicates that four specific circulating miRNA signature, may be utilized as non-invasive, diagnostic and prognostic biomarkers for early vascular damage in patients suffering from vitamin D deficiency, obesity and DM
    corecore