48 research outputs found

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    A Danger to the World’s Food: Genetic Engineering and the Economic Interests of the Life-Science Industry

    No full text

    Stevens–Johnson syndrome and toxic epidermal necrolysis: an update on pharmacogenetics studies in drug-induced severe skin reaction

    No full text
    Stevens-Johnson syndrome and toxic epidermal necrolysis are severe, life-threatening drug reactions involving skin and membranes mucous, which are associated with significant morbidity and mortality and triggered, especially by drug exposure. Different studies have demonstrated that drug response is a multifactorial character and that the interindividual variability in this response depends on both environmental and genetic factors. The last ones have a relevant significance. In fact, the identification of new specific genetic markers involved in the response to drugs, will be of great utility to establish a more personalized therapeutic approach and to prevent the appearance of these adverse reactions. In this review, we summarize recent progresses in the Pharmacogenetics studies related to Stevens-Johnson syndrome/toxic epidermal necrolysis reporting the major genetic factors identified in the last years as associated with the disease and highlighting the use of some of these genomic variants in the clinical practice
    corecore