25 research outputs found

    The regulation of CFTR by protein-protein interactions

    Get PDF
    Cystic fibrosis (CF) is an autosomal recessive disease resulting from the misregulation of epithelial ion transport. CF is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an apical membrane chloride channel expressed in polarized epithelial cells. To identify factors that regulate CFTR activity, we utilized biochemical and proteomics approaches to identify novel CFTR binding proteins. We find that the C-terminus of CFTR directly interacts with the serine/threonine phosphatase PP2A. PP2A is a heterotrimeric phosphatase composed of a catalytic subunit and two divergent regulatory subunits (A and B), which mediate the cellular localization and substrate specificity of the enzyme. By mass spectrometry, we identified the exact PP2A regulatory subunits associated with CFTR as Aα and B’ε, and find that the B’ε subunit binds CFTR directly. PP2A subunits localize to the apical surface of airway epithelia and PP2A phosphatase activity co-purifies with CFTR in Calu-3 cells. In functional assays, PP2A inhibition blocks the rundown of basal CFTR currents and increases channel activity in excised patches of airway epithelia and in intact mouse jejunum. Moreover, PP2A inhibition increases the pericilliary liquid in cultures of well differentiated human bronchial epithelial cells by a CFTR-dependent mechanism. Thus, PP2A is a relevant CFTR phosphatase in epithelial tissues and may be a clinically relevant drug target for CF. Additionally, the N-terminus of CFTR directly interacts with two actin binding proteins, filamin A and filamin B. In polarized epithelial cells, filamins are highly localized to the sub-apical compartment where they likely interact with CFTR at or near the plasma membrane. We find that CFTR and filamins specifically interact by co-immunoprecipitation and that a disease-causing mutation in CFTR, serine 13 to phenylalanine (S13F), disrupts this interaction. Consistent with the loss of cytoskeletal anchorage, S13F CFTR displays decreased cell surface levels and less confinement at the plasma membrane relative to wildtype CFTR. Furthermore, S13F CFTR is more rapidly degraded compared to wild-type CFTR which correlates with the accumulation of S13F CFTR in the lysosomes. Taken together, these data suggest the filamins regulate the cell surface stability and endocytic trafficking of CFTR

    Transient anchorage of cross-linked glycosyl-phosphatidylinositol–anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides

    Get PDF
    How outer leaflet plasma membrane components, including glycosyl-phosphatidylinositol–anchored proteins (GPIAPs), transmit signals to the cell interior is an open question in membrane biology. By deliberately cross-linking several GPIAPs under antibody-conjugated 40-nm gold particles, transient anchorage of the gold particle–induced clusters of both Thy-1 and CD73, a 5′ exonucleotidase, occurred for periods ranging from 300 ms to 10 s in fibroblasts. Transient anchorage was abolished by cholesterol depletion, addition of the Src family kinase (SFK) inhibitor PP2, or in Src-Yes-Fyn knockout cells. Caveolin-1 knockout cells exhibited a reduced transient anchorage time, suggesting the partial participation of caveolin-1. In contrast, a transmembrane protein, the cystic fibrosis transmembrane conductance regulator, exhibited transient anchorage that occurred without deliberately enhanced cross-linking; moreover, it was only slightly inhibited by cholesterol depletion or SFK inhibition and depended completely on the interaction of its PDZ-binding domain with the cytoskeletal adaptor EBP50. We propose that cross-linked GPIAPs become transiently anchored via a cholesterol-dependent SFK-regulatable linkage between a transmembrane cluster sensor and the cytoskeleton

    A Novel PDZ Protein Regulates the Activity of Guanylyl Cyclase C, the Heat-stable Enterotoxin Receptor

    Get PDF
    Secretory diarrhea is the leading cause of infectious diarrhea in humans. Secretory diarrhea may be caused by binding of heat-stable enterotoxins to the intestinal receptor guanylyl cyclase C (GCC). Activation of GCC catalyzes the formation of cGMP, initiating a signaling cascade that opens the cystic fibrosis transmembrane conductance regulator chloride channel at the apical cell surface. To identify proteins that regulate the trafficking or function of GCC, we used the unique COOH terminus of GCC as the "bait" to screen a human intestinal yeast two-hybrid library. We identified a novel protein, IKEPP (intestinal and kidney-enriched PDZ protein) that associates with the COOH terminus of GCC in biochemical assays and by co-immunoprecipitation. IKEPP is expressed in the intestinal epithelium, where it is preferentially accumulated at the apical surface. The GCC-IKEPP interaction is not required for the efficient targeting of GCC to the apical cell surface. Rather, the association with IKEPP significantly inhibits heat-stable enterotoxin-mediated activation of GCC. Our findings are the first to identify a regulatory protein that associates with GCC to modulate the catalytic activity of the enzyme and provides new insights in mechanisms that regulate GCC activity in response to bacterial toxin

    Elevated Intracellular Calcium Stimulates NHE3 Activity by an IKEPP (NHERF4) Dependent Mechanism

    Get PDF
    The ileal brush border (BB) contains four evolutionarily related multi-PDZ domain proteins including NHERF1, NHERF2, PDZK1 (NHERF3) and IKEPP (NHERF4). Why multiple related PDZ proteins are in a similar location in the same cell is unknown. However, some specificity in regulation of NHE3 activity has been identified. For example, elevated intracellular Ca2+ ([Ca2+]i) inhibition of NHE3 is reconstituted by NHERF2 but not NHERF1, and involves the formation of large NHE3 complexes. To further evaluate the specificity of the NHERF family in calcium regulation of NHE3 activity, the current study determined whether the four PDZ domain containing protein IKEPP reconstitutes elevated [Ca2+]i regulation of NHE3. In vitro, IKEPP bound to the F2 region (aa 590-667) of NHE3 in overlay assays, which is the same region where NHERF1 and NHERF2 bind. PS120 cells lack endogenous NHE3 and IKEPP. Treatment of PS120/NHE3/IKEPP cells (stably transfected with NHE3 and IKEPP) with the Ca2+ ionophore, 4-Br-{"type":"entrez-nucleotide","attrs":{"text":"A23187","term_id":"833253","term_text":"A23187"}}A23187 (0.5μM), stimulated NHE3 Vmax activity by ∼40%. This was associated with an increase in plasma membrane expression of NHE3 by a similar amount. NHE3 activity and surface expression were unaffected by {"type":"entrez-nucleotide","attrs":{"text":"A23187","term_id":"833253","term_text":"A23187"}}A23187 in PS120/NHE3 cells lacking IKEPP. Based on sucrose density gradient centrifugation, IKEPP was also shown to exist in large complexes, some of which overlap in size with NHE3, and the size of both NHE3 and IKEPP complexes decreased in parallel after [Ca2+]i elevation. FRET experiments on fixed cells demonstrated that IKEPP and NHE3 directly associated at an intracellular site. Elevating [Ca2+]i decreased this intracellular NHE3 and IKEPP association. In summary: (1) In the presence of IKEPP, elevated [Ca2+]i stimulates NHE3 activity. This was associated with increased expression of NHE3 in the plasma membrane as well as a shift to smaller sizes of NHE3 and IKEPP containing complexes. (2) IKEPP directly binds NHE3 at its F2 C-terminal domain and directly associates with NHE3 in vivo (FRET). (3) Elevated [Ca2+]i decreased the association of IKEPP and NHE3 in an intracellular compartment. Based on which NHERF family member is expressed in PS120 cells, elevated [Ca2+]i stimulates (IKEPP), inhibits (NHERF2) or does not affect (NHERF1) NHE3 activity. This demonstrates that regulation of NHE3 depends on the nature of the NHERF family member associating with NHE3 and the accompanying NHE3 complexes

    The Cystic Fibrosis Transmembrane Conductance Regulator Is Regulated by a Direct Interaction with the Protein Phosphatase 2A

    Get PDF
    The cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated chloride channel expressed at the apical surface of epithelia. Although the regulation of CFTR by protein kinases is well documented, channel deactivation by phosphatases is not well understood. We find that the serine/threonine phosphatase PP2A can physically associate with the CFTR COOH terminus. PP2A is a heterotrimeric phosphatase composed of a catalytic subunit and two divergent regulatory subunits (A and B). The cellular localization and substrate specificity of PP2A is determined by the unique combination of A and B regulatory subunits, which can give rise to at least 75 different enzymes. By mass spectrometry, we identified the exact PP2A regulatory subunits associated with CFTR as Aalpha and B'epsilon and find that the B'epsilon subunit binds CFTR directly. PP2A subunits localize to the apical surface of airway epithelia and PP2A phosphatase activity co-purifies with CFTR in Calu-3 cells. In functional assays, inhibitors of PP2A block rundown of basal CFTR currents and increase channel activity in excised patches of airway epithelia and in intact mouse jejunum. Moreover, PP2A inhibition in well differentiated human bronchial epithelial cells results in a CFTR-dependent increase in the airway surface liquid. Our data demonstrate that PP2A is a relevant CFTR phosphatase in epithelial tissues. Our results may help reconcile differences in phosphatase-mediated channel regulation observed for different tissues and cells. Furthermore, PP2A may be a clinically relevant drug target for CF, which should be considered in future studies

    Modified Cav1.4 Expression in the Cacna1fnob2 Mouse Due to Alternative Splicing of an ETn Inserted in Exon 2

    Get PDF
    The Cacna1fnob2 mouse is reported to be a naturally occurring null mutation for the Cav1.4 calcium channel gene and the phenotype of this mouse is not identical to that of the targeted gene knockout model. We found two mRNA species in the Cacna1fnob2 mouse: approximately 90% of the mRNA represents a transcript with an in-frame stop codon within exon 2 of CACNA1F, while approximately 10% of the mRNA represents a transcript in which alternative splicing within the ETn element has removed the stop codon. This latter mRNA codes for full length Cav1.4 protein, detectable by Western blot analysis that is predicted to differ from wild type Cav1.4 protein in a region of approximately 22 amino acids in the N-terminal portion of the protein. Electrophysiological analysis with either mouse Cav1.4wt or Cav1.4nob2 cDNA revealed that the alternatively spliced protein does not differ from wild type with respect to activation and inactivation characteristics; however, while the wild type N-terminus interacted with filamin proteins in a biochemical pull-down experiment, the alternatively spliced N-terminus did not. The Cacna1fnob2 mouse electroretinogram displayed reduced b-wave and oscillatory potential amplitudes, and the retina was morphologically disorganized, with substantial reduction in thickness of the outer plexiform layer and sprouting of bipolar cell dendrites ectopically into the outer nuclear layer. Nevertheless, the spatial contrast sensitivity (optokinetic response) of Cacna1fnob2 mice was generally similar to that of wild type mice. These results suggest the Cacna1fnob2 mouse is not a CACNA1F knockout model. Rather, alternative splicing within the ETn element can lead to full-length Cav1.4 protein, albeit at reduced levels, and the functional Cav1.4 mutant may be incapable of interacting with cytoskeletal filamin proteins. These changes, do not alter the ability of the Cacna1fnob2 mouse to detect and follow moving sine-wave gratings compared to their wild type counterparts

    Lactadherin binds to elastin - a starting point for medin amyloid formation?

    No full text
    Medin amyloid is found in the medial layer of the aorta in almost 100% of the Caucasian population over 50 years of age. The medin fragment is 5.5 kDa and derives from the C2-like domain of the precursor protein lactadherin. We have previously reported immunohistochemical findings showing that medin amyloid co-localizes with elastic fibers of arteries and herein we show that lactadherin also is associated with elastic structures of human aortic material. In addition, results from in vitro binding assays demonstrate that both medin and lactadherin bind to tropoelastin in a concentration-dependent fashion, suggesting that the lactadherin-tropoelastin interaction is mediated via the medin domain. It is possible that lactadherin, which is a cell adhesion protein, in this way connects smooth muscle cells to the elastic fibers of arteries. Given that both medin and lactadherin interact with elastic fibers, elastin is probably an important component in the formation of medin amyloid
    corecore