1,532 research outputs found
Patterning of two-dimensional electron systems in SrTiO₃ based heterostructures using a CeO₂ template
Two-dimensional electron systems found at the interface of SrTiO3-based oxide heterostructures often display anisotropic electric transport whose origin is currently under debate. To characterize transport along specific crystallographic directions, we developed a hard-mask patterning routine based on an amorphous CeO2 template layer. The technique allows preparing well-defined microbridges by conventional ultraviolet photolithography which, in comparison to standard techniques such as ion- or wet-chemical etching, does not induce any degradation of interfacial conductance. The patterning scheme is described in detail and the successful production of microbridges based on amorphous Al2O3-SrTiO3 heterostructures is demonstrated. Significant anisotropic transport is observed for T < 30 K which is mainly related to impurity/defect scattering of charge carriers in these heterostructures
The Influence of Magnetic Imperfections on the Low Temperature Properties of D-wave Superconductors
We consider the influence of planar ``magnetic" imperfections which destroy
the local magnetic order, such as Zn impurities or vacancies, on the
low temperature properties of the cuprate superconductors. In the unitary
limit, at low temperatures, for a pairing state such
imperfections produce low energy quasiparticles with an anistropic spectrum in
the vicinity of the nodes. We find that for the system, one
is in the {\em quasi-one-dimensional} regime of quasiparticle scattering,
discussed recently by Altshuler, Balatsky, and Rosengren, for impurity
concentrations in excess of whereas YBCO appears likely to be
in the true 2D scattering regime for Zn concentrations less than . We
show the neutron scattering results of Mason et al. \cite{Aeppli} on
provide strong evidence for ``dirty d-wave"
superconductivity in their samples. We obtain simple expressions for the
dynamic spin susceptibility and spin-lattice relaxation time,
, in the superconducting state.Comment: 10 pages; revtex; Los Alamos preprint LA-UR-94-53
P3DB: a plant protein phosphorylation database
P3DB (http://www.p3db.org/) provides a resource of protein phosphorylation data from multiple plants. The database was initially constructed with a dataset from oilseed rape, including 14 670 nonredundant phosphorylation sites from 6382 substrate proteins, representing the largest collection of plant phosphorylation data to date. Additional protein phosphorylation data are being deposited into this database from large-scale studies of Arabidopsis thaliana and soybean. Phosphorylation data from current literature are also being integrated into the P3DB. With a web-based user interface, the database is browsable, downloadable and searchable by protein accession number, description and sequence. A BLAST utility was integrated and a phosphopeptide BLAST browser was implemented to allow users to query the database for phosphopeptides similar to protein sequences of their interest. With the large-scale phosphorylation data and associated web-based tools, P3DB will be a valuable resource for both plant and nonplant biologists in the field of protein phosphorylation
Historical-institutionalist perspectives on the development of the EU budget system
The EU budget has only recently started to feature in theories of European integration. Studies typically adopt a historical-institutionalist framework, exploring notions such as path dependency. They have, however, generally been rather aggregated, or coarse-grained, in their approach. The EU budget has thus been treated as a single entity rather than a series of inter-linked institutions. This paper seeks to address these lacunae by adopting a fine-grained approach. This enables us to emphasize the connections that exist between EU budgetary institutions, in both time and space. We show that the initial set of budgetary institutions was unable, over time, to achieve consistently their treaty-based objectives. In response, rather than reform these institutions at potentially high political cost, additional institutions were layered on top of the extant structures. We thus demonstrate how some EU budgetary institutions have remained unchanged, whilst others have been added or changed over time
A comparative framework: how broadly applicable is a 'rigorous' critical junctures framework?
The paper tests Hogan and Doyle's (2007, 2008) framework for examining critical junctures. This framework sought to incorporate the concept of ideational change in understanding critical junctures. Until its development, frameworks utilized in identifying critical junctures were subjective, seeking only to identify crisis, and subsequent policy changes, arguing that one invariably led to the other, as both occurred around the same time. Hogan and Doyle (2007, 2008) hypothesized ideational change as an intermediating variable in their framework, determining if, and when, a crisis leads to radical policy change. Here we test this framework on cases similar to, but different from, those employed in developing the exemplar. This will enable us determine whether the framework's relegation of ideational change to a condition of crisis holds, or, if ideational change has more importance than is ascribed to it by this framework. This will also enable us determined if the framework itself is robust, and fit for the purposes it was designed to perform — identifying the nature of policy change
The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System
We describe the layout and unique features of the focal plane system for
MIRI. We begin with the detector array and its readout integrated circuit
(combining the amplifier unit cells and the multiplexer), the electronics, and
the steps by which the data collection is controlled and the output signals are
digitized and delivered to the JWST spacecraft electronics system. We then
discuss the operation of this MIRI data system, including detector readout
patterns, operation of subarrays, and data formats. Finally, we summarize the
performance of the system, including remaining anomalies that need to be
corrected in the data pipeline
A high solids field-to-fuel research pipeline to identify interactions between feedstocks and biofuel production
Background: Environmental factors, such as weather extremes, have the potential to cause adverse effects on plant biomass quality and quantity. Beyond adversely affecting feedstock yield and composition, which have been extensively studied, environmental factors can have detrimental effects on saccharification and fermentation processes in biofuel production. Only a few studies have evaluated the effect of these factors on biomass deconstruction into biofuel and resulting fuel yields. This field-to-fuel evaluation of various feedstocks requires rigorous coordination of pretreatment, enzymatic hydrolysis, and fermentation experiments. A large number of biomass samples, often in limited quantity, are needed to thoroughly understand the effect of environmental conditions on biofuel production. This requires greater processing and analytical throughput of industrially relevant, high solids loading hydrolysates for fermentation, and led to the need for a laboratory-scale high solids experimentation platform. Results: A field-to-fuel platform was developed to provide sufficient volumes of high solids loading enzymatic hydrolysate for fermentation. AFEX pretreatment was conducted in custom pretreatment reactors, followed by high solids enzymatic hydrolysis. To accommodate enzymatic hydrolysis of multiple samples, roller bottles were used to overcome the bottlenecks of mixing and reduced sugar yields at high solids loading, while allowing greater sample throughput than possible in bioreactors. The roller bottle method provided 42–47% greater liquefaction compared to the batch shake flask method for the same solids loading. In fermentation experiments, hydrolysates from roller bottles were fermented more rapidly, with greater xylose consumption, but lower final ethanol yields and CO2 production than hydrolysates generated with shake flasks. The entire platform was tested and was able to replicate patterns of fermentation inhibition previously observed for experiments conducted in larger-scale reactors and bioreactors, showing divergent fermentation patterns for drought and normal year switchgrass hydrolysates. Conclusion: A pipeline of small-scale AFEX pretreatment and roller bottle enzymatic hydrolysis was able to provide adequate quantities of hydrolysate for respirometer fermentation experiments and was able to overcome hydrolysis bottlenecks at high solids loading by obtaining greater liquefaction compared to batch shake flask hydrolysis. Thus, the roller bottle method can be effectively utilized to compare divergent feedstocks and diverse process conditions
- …