15 research outputs found

    Relative seismic velocity variations correlate with deformation at KÄ«lauea volcano, Hawai'i

    Get PDF
    Seismic noise interferometry allows the continuous and real-time measurement of relative seismic velocity through a volcanic edifice. Because seismic velocity is sensitive to the pressurization state of the system, this method is an exciting new monitoring tool at active volcanoes. Despite the potential of this tool, no studies have yet comprehensively compared velocity to other geophysical observables on a short-term time scale at a volcano over a significant length of time. We use volcanic tremor (~0.3 to 1.0 Hz) at Kīlauea as a passive source for interferometry to measure relative velocity changes with time. By cross-correlating the vertical component of day-long seismic records between ~230 station pairs, we extract coherent and temporally consistent coda wave signals with time lags of up to 120 s. Our resulting time series of relative velocity shows a remarkable correlation between relative velocity and the radial tilt record measured at Kīlauea summit, consistently correlating on a time scale of days to weeks for almost the entire study period (June 2011 to November 2015). As the summit continually deforms in deflation-inflation events, the velocity decreases and increases, respectively. Modeling of strain at Kīlauea suggests that, during inflation of the shallow magma reservoir (1 to 2 km below the surface), most of the edifice is dominated by compression—hence closing cracks and producing faster velocities—and vice versa. The excellent correlation between relative velocity and deformation in this study provides an opportunity to understand better the mechanisms causing seismic velocity changes at volcanoes, and therefore realize the potential of passive interferometry as a monitoring tool

    Volcano dome dynamics at Mount St. Helens:Deformation and intermittent subsidence monitored by seismicity and camera imagery pixel offsets

    Get PDF
    The surface deformation field measured at volcanic domes provides insights into the effects of magmatic processes, gravity-and gas-driven processes, and the development and distribution of internal dome structures. Here we study short-term dome deformation associated with earthquakes at Mount St. Helens, recorded by a permanent optical camera and seismic monitoring network. We use Digital Image Correlation (DIC) to compute the displacement field between successive images and compare the results to the occurrence and characteristics of seismic events during a 6 week period of dome growth in 2006. The results reveal that dome growth at Mount St. Helens was repeatedly interrupted by short-term meter-scale downward displacements at the dome surface, which were associated in time with low-frequency, large-magnitude seismic events followed by a tremor-like signal. The tremor was only recorded by the seismic stations closest to the dome. We find a correlation between the magnitudes of the camera-derived displacements and the spectral amplitudes of the associated tremor. We use the DIC results from two cameras and a high-resolution topographic model to derive full 3-D displacement maps, which reveals internal dome structures and the effect of the seismic activity on daily surface velocities. We postulate that the tremor is recording the gravity-driven response of the upper dome due to mechanical collapse or depressurization and fault-controlled slumping. Our results highlight the different scales and structural expressions during growth and disintegration of lava domes and the relationships between seismic and deformation signals

    Dualismos em duelo

    Full text link

    The northern Walker Lane refraction experiment: Pn arrivals and the northern Sierra Nevada root

    Full text link
    In May 2002, we collected a new crustal refraction profile from Battle Mountain, Nevada across western Nevada, the Reno area, Lake Tahoe, and the northern Sierra Nevada Mountains to Auburn, CA. Mine blasts and earthquakes were recorded by 199 Texan instruments extending across this more than 450-km-long transect. The use of large mine blasts and the ultra-portable Texan recorders kept the field costs of this profile to less than US$10,000. The seismic sources at the eastern end were mining blasts at Barrick's GoldStrike mine. The GoldStrike mine produced several ripple-fired blasts using 8000–44,000 kg of ANFO each, a daily occurrence. First arrivals from the larger GoldStrike blasts are obvious to distances of 300 km in the raw records. First arrivals from a quarry blast west of the survey near Watsonville, CA, located by the Northern California Seismic Network with a magnitude of 2.2, can be picked across the recording array to distances of 600 km. The Watsonville blast provides a western source, nearly reversing the GoldStrike blasts. A small earthquake near Bridgeport, CA. also produced pickable P-wave arrivals across the transect, providing fan-shot data. Arrivals from M5 events in the Mariana and Kuril Islands also appear in the records. This refraction survey observes an unexpectedly deep crustal root under the northern Sierra Nevada range, over 50 km in thickness and possibly centered west of the topographic crest. Pn delays of 4–6 s support this interpretation. At Battle Mountain, Nevada, we observe anomalously thin crust over a limited region perhaps only 150 km wide, with a Moho depth of 19–23 km. Pn crossover distances of less than 80 km support this anomaly, which is surrounded by observations of more normal, 30-km-thick crust. A 10-km-thick and high-velocity lower-crustal “pillow” is an alternative hypothesis, but unlikely due to the lack of volcanics west of Battle Mountain. Large mine and quarry blasts prove very effective crustal refraction sources when recorded with a dense receiver array, even over distances exceeding 600 km. New elastic synthetic seismogram modeling suggests that Pn can be strong as a first arrival, easing the modeling and interpretation of crustal refraction data. Fast eikonal computations of first-arrival time can match pickable Pn arrival times

    Characterizing and Locating Seismic Tremor during the 2022 Eruption of Mauna Loa Volcano, Hawai’i, with Network Covariance

    Full text link
    The 2022 eruption of Mauna Loa Volcano, Hawai’i, was accompanied by continuous seismic tremor that began about 30 min before and ended several days after the eruption. We characterize the amplitude history and frequency content of the tremor, and we use a network covariance‐based method to estimate its source location. The tremor exhibits multiple narrow spectral peaks between 1 and 3 Hz, and its amplitude varies through time in a spasmodic manner. Our location results track a northeast migration of shallow sources through the summit region in the first few hours of the eruption. For the remainder of the eruption, source locations cluster in the vicinity of the erupting vent in the northeast rift zone. We attribute the tremor source to gas dynamics in the upper reaches of a basaltic dike. However, limitations in instrumentation and knowledge of the subsurface velocity structure may preclude an assessment of the source mechanism. Our results illustrate the value of characterizing and locating tremor for tracking magma movement, and demonstrate a use for dense and calibrated seismic instrumentation on active volcanoes. The location method we use requires substantial parameter testing, reflecting the potential benefit of developing more flexible approaches toward real‐time automated assessment of tremor at volcanoes

    Local Source Vp and Vs Tomography in the Mount St. Helens Region With the iMUSH Broadband Array

    Full text link
    We present new 3-D P wave and S wave velocity models of the upper 20 km of the Mount St. Helens (MSH) region. These were obtained using local-source arrival time tomography from earthquakes and explosions recorded at 70 broadband stations deployed as part of the imaging Magma Under St. Helens (iMUSH) project and augmented by several data sets. Principal features of our models include (1) low P wave and S wave velocities along the St. Helens seismic zone to depths of at least 20 km corresponding to high conductivity imaged by iMUSH magnetotelluric studies. This delineates a zone of weakness that magma can exploit at the location of MSH; (2) a 5- to 7-km diameter, 6-15 km deep, 3-6% negative P wave and S wave velocity anomaly beneath MSH, consistent with previous estimates of the source region for recent eruptions. We interpret this as a magma storage region containing up to 15-20 km(3) of partial melt, which is about 5 times more than the largest documented eruption at MSH; (3) a broad region of low P wave velocity below 10-km depth extending between Mount Adams and Mount Rainier along and to the east of the main Cascade arc, which is likely due to high-temperature arc crust and possible presence of fluids or melt; (4) several anomalies associated with surface-mapped features, including high-velocity igneous units such as the Spud Mountain and Spirit Lake plutons and low velocities in the Chehalis sedimentary basin and the Indian Heaven volcanic field. Our results place further constraints on the geometry of these features at depth. Plain Language Summary We deployed 70 seismometers around Mount St. Helens volcano from 2014 to 2016, which measured the surface ground motion from hundreds of small earthquakes, as well as from 23 explosions that were set off in 2014. We recorded the onset time of shaking from these sources and used a specialized computer code to model how quickly seismic waves travel through the subsurface. Seismic wave speed can be influenced by several factors, including rock type, presence of magma/fluids, temperature, pressure, and how fractured the rock is. Based on the seismic wave speeds in our model, we make several geological interpretations, including (1) increased fluids or fractures, or presence of sedimentary rocks corresponding to elevated earthquake activity to the NNW of Mount St. Helens; (2) a magma storage region beneath the volcano similar to results from previous studies. Our model places further constraints on the orientation and size of the region; (3) a large zone of high temperatures and possible fluids or magma related to regional volcanism between and to the east of Mount Adams and Mount Rainier; (4) more detailed size and depth constraints on geological features seen at the surface, including sedimentary basins and rock units related to previous regional volcanism. Key Points New high-resolution P wave and S wave velocity models are calculated for the Mount St. Helens region Velocity models place further constraints on size and location of magma storage regions, seismic zones, sedimentary basins, and plutons These shed light on the accretionary history of the Siletzia terrane, with a transitional upper crustal boundary near Mount St. HelensNational Science Foundation of Sri Lanka6 month embargo; first published online 19 February 2020This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Dynamics of the December 2020 Ash‐Poor Plume Formed by Lava‐Water Interaction at the Summit of Kīlauea Volcano, Hawaiʻi

    Full text link
    Abstract On 20 December 2020, after more than 2 years of quiescence at KÄ«lauea Volcano, HawaiÊ»i, renewed volcanic activity in the summit crater caused boiling of the water lake over a period of ∌90 min. The resulting water‐rich, electrified plume rose to 11–13 km above sea level, which is among the highest plumes on record for KÄ«lauea. Although conventional models would infer a high mass flux from explosive magma‐water interaction, the plume was not associated with an infrasound signal indicative of “explosive” activity, nor did it produce a measurable ash‐fall deposit. We use multisensor data to characterize lava‐water interaction and plume generation during this opening phase of the 2020–21 eruption. Satellite, weather radar, and eyewitness observations revealed that the plume was rich in water vapor and hydrometeors but transported less ash than expected from its maximum height. Volcanic lightning flashes detected by ground‐based cameras were confined to freezing altitudes of the upper cloud, suggesting that the ice formation drove the electrification of this plume. The low acoustic energy from lava‐water interaction points to a weakly explosive style of hydrovolcanism. Heat transfer calculations show that the lava to water heat flux was sufficient to boil the lake within 90 min. Limited mixing of lava and water inhibited major steam explosions and fine fragmentation. Results from one‐dimensional plume modeling suggest that the models may underpredict plume height due to overestimation of crosswind air‐entrainment. Our findings shed light on an unusual style of volcanism in which weakly explosive lava‐water interaction generated an outsized plume

    Examining an elaborated sociocultural model of disordered eating among college women: The roles of social comparison and body surveillance

    Full text link
    Social comparison (i.e., body, eating, exercise) and body surveillance were tested as mediators of the thin-ideal internalization-body dissatisfaction relationship in the context of an elaborated sociocultural model of disordered eating. Participants were 219 college women who completed two questionnaire sessions 3 months apart. The cross-sectional elaborated sociocultural model (i.e., including social comparison and body surveillance as mediators of the thin-ideal internalization-body dissatisfaction relation) provided a good fit to the data, and the total indirect effect from thin-ideal internalization to body dissatisfaction through the mediators was significant. Social comparison emerged as a significant specific mediator while body surveillance did not. The mediation model did not hold prospectively; however, social comparison accounted for unique variance in body dissatisfaction and disordered eating 3 months later. Results suggest that thin-ideal internalization may not be “automatically” associated with body dissatisfaction and that it may be especially important to target comparison in prevention and intervention efforts
    corecore