7 research outputs found

    Collective Awareness for Abnormality Detection in Connected Autonomous Vehicles

    Get PDF
    The advancements in connected and autonomous vehicles in these times demand the availability of tools providing the agents with the capability to be aware and predict their own states and context dynamics. This article presents a novel approach to develop an initial level of collective awareness (CA) in a network of intelligent agents. A specific collective self-awareness functionality is considered, namely, agent-centered detection of abnormal situations present in the environment around any agent in the network. Moreover, the agent should be capable of analyzing how such abnormalities can influence the future actions of each agent . Data-driven dynamic Bayesian network (DBN) models learned from time series of sensory data recorded during the realization of tasks (agent network experiences) are here used for abnormality detection and prediction. A set of DBNs, each related to an agent , is used to allow the agents in the network to reach synchronously aware possible abnormalities occurring when available models are used on a new instance of the task for which DBNs have been learned. A growing neural gas (GNG) algorithm is used to learn the node variables and conditional probabilities linking nodes in the DBN models; a Markov jump particle filter (MJPF) is employed for state estimation and abnormality detection in each agent using learned DBNs as filter parameters. Performance metrics are discussed to asses the algorithm’s reliability and accuracy. The impact is also evaluated by the communication channel used by the network to share the data sensed in a distributed way by each agent of the network. The IEEE 802.11p protocol standard has been considered for communication among agents. Performances of the DBN-based abnormality detection models under different channel and source conditions are discussed. The effects of distances among agents and of the delays and packet losses are analyzed in different scenario categories (urban, suburban, and rural). Real data se..

    Graph-Powered Interpretable Machine Learning Models for Abnormality Detection in Ego-Things Network

    Full text link
    In recent days, it is becoming essential to ensure that the outcomes of signal processing methods based on machine learning (ML) data-driven models can provide interpretable predictions. The interpretability of ML models can be defined as the capability to understand the reasons that contributed to generating a given outcome in a complex autonomous or semi-autonomous system. The necessity of interpretability is often related to the evaluation of performances in complex systems and the acceptance of agents\u2019 automatization processes where critical high-risk decisions have to be taken. This paper concentrates on one of the core functionality of such systems, i.e., abnormality detection, and on choosing a model representation modality based on a data-driven machine learning (ML) technique such that the outcomes become interpretable. The interpretability in this work is achieved through graph matching of semantic level vocabulary generated from the data and their relationships. The proposed approach assumes that the data-driven models to be chosen should support emergent self-awareness (SA) of the agents at multiple abstraction levels. It is demonstrated that the capability of incrementally updating learned representation models based on progressive experiences of the agent is shown to be strictly related to interpretability capability. As a case study, abnormality detection is analyzed as a primary feature of the collective awareness (CA) of a network of vehicles performing cooperative behaviors. Each vehicle is considered an example of an Internet of Things (IoT) node, therefore providing results that can be generalized to an IoT framework where agents have different sensors, actuators, and tasks to be accomplished. The capability of a model to allow evaluation of abnormalities at different levels of abstraction in the learned models is addressed as a key aspect for interpretability

    Prediction of Multi-target Dynamics Using Discrete Descriptors: An Interactive Approach

    Full text link
    We propose a probabilistic method to track and interpret the interactions of moving objects. The proposed method is based on the analysis of location data from different moving objects that modify their dynamics according to rules of interactions, namely attractive and repulsive forces governing objects' motions in a scene. Our method uses a Bayesian structure to identify key elements of the interplay rules and facilitates the prediction of objects' dynamics as an interacting system. Such a prediction facilitates the detection of abnormalities by identifying unseen interaction effects in the scene

    Self-awareness in intelligent vehicles: Feature based dynamic Bayesian models for abnormality detection

    Full text link
    The evolution of Intelligent Transportation Systems in recent times necessitates the development of self-awareness in agents. Before the intensive use of Machine Learning, the detection of abnormalities was manually programmed by checking every variable and creating huge nested conditions that are very difficult to track. This paper aims to introduce a novel method to develop self-awareness in autonomous vehicles that mainly focuses on detecting abnormal situations around the considered agents. Multi-sensory time-series data from the vehicles are used to develop the data-driven Dynamic Bayesian Network (DBN) models used for future state prediction and the detection of dynamic abnormalities. Moreover, an initial level collective awareness model that can perform joint anomaly detection in co-operative tasks is proposed. The GNG algorithm learns the DBN models\u2019 discrete node variables; probabilistic transition links connect the node variables. A Markov Jump Particle Filter (MJPF) is applied to predict future states and detect when the vehicle is potentially misbehaving using learned DBNs as filter parameters. In this paper, datasets from real experiments of autonomous vehicles performing various tasks used to learn and test a set of switching DBN models

    Non-pharmaceutical interventions, vaccination, and the SARS-CoV-2 delta variant in England: a mathematical modelling study

    Full text link
    Background: England's COVID-19 roadmap out of lockdown policy set out the timeline and conditions for the stepwise lifting of non-pharmaceutical interventions (NPIs) as vaccination roll-out continued, with step one starting on March 8, 2021. In this study, we assess the roadmap, the impact of the delta (B.1.617.2) variant of SARS-CoV-2, and potential future epidemic trajectories. Methods: This mathematical modelling study was done to assess the UK Government's four-step process to easing lockdown restrictions in England, UK. We extended a previously described model of SARS-CoV-2 transmission to incorporate vaccination and multi-strain dynamics to explicitly capture the emergence of the delta variant. We calibrated the model to English surveillance data, including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework, then modelled the potential trajectory of the epidemic for a range of different schedules for relaxing NPIs. We estimated the resulting number of daily infections and hospital admissions, and daily and cumulative deaths. Three scenarios spanning a range of optimistic to pessimistic vaccine effectiveness, waning natural immunity, and cross-protection from previous infections were investigated. We also considered three levels of mixing after the lifting of restrictions. Findings: The roadmap policy was successful in offsetting the increased transmission resulting from lifting NPIs starting on March 8, 2021, with increasing population immunity through vaccination. However, because of the emergence of the delta variant, with an estimated transmission advantage of 76% (95% credible interval [95% CrI] 69–83) over alpha, fully lifting NPIs on June 21, 2021, as originally planned might have led to 3900 (95% CrI 1500–5700) peak daily hospital admissions under our central parameter scenario. Delaying until July 19, 2021, reduced peak hospital admissions by three fold to 1400 (95% CrI 700–1700) per day. There was substantial uncertainty in the epidemic trajectory, with particular sensitivity to the transmissibility of delta, level of mixing, and estimates of vaccine effectiveness. Interpretation: Our findings show that the risk of a large wave of COVID-19 hospital admissions resulting from lifting NPIs can be substantially mitigated if the timing of NPI relaxation is carefully balanced against vaccination coverage. However, with the delta variant, it might not be possible to fully lift NPIs without a third wave of hospital admissions and deaths, even if vaccination coverage is high. Variants of concern, their transmissibility, vaccine uptake, and vaccine effectiveness must be carefully monitored as countries relax pandemic control measures

    Epidemiological drivers of transmissibility and severity of SARS-CoV-2 in England

    Full text link
    Abstract As the SARS-CoV-2 pandemic progressed, distinct variants emerged and dominated in England. These variants, Wildtype, Alpha, Delta, and Omicron were characterized by variations in transmissibility and severity. We used a robust mathematical model and Bayesian inference framework to analyse epidemiological surveillance data from England. We quantified the impact of non-pharmaceutical interventions (NPIs), therapeutics, and vaccination on virus transmission and severity. Each successive variant had a higher intrinsic transmissibility. Omicron (BA.1) had the highest basic reproduction number at 8.3 (95% credible interval (CrI) 7.7-8.8). Varying levels of NPIs were crucial in controlling virus transmission until population immunity accumulated. Immune escape properties of Omicron decreased effective levels of immunity in the population by a third. Furthermore, in contrast to previous studies, we found Alpha had the highest basic infection fatality ratio (2.9%, 95% CrI 2.7-3.2), followed by Delta (2.2%, 95% CrI 2.0–2.4), Wildtype (1.2%, 95% CrI 1.1–1.2), and Omicron (0.7%, 95% CrI 0.6-0.8). Our findings highlight the importance of continued surveillance. Long-term strategies for monitoring and maintaining effective immunity against SARS-CoV-2 are critical to inform the role of NPIs to effectively manage future variants with potentially higher intrinsic transmissibility and severe outcomes

    Quantifying the impact of delaying the second COVID-19 vaccine dose in England: a mathematical modelling study

    Get PDF
    Background: The UK was the first country to start national COVID-19 vaccination programmes, initially administering doses 3-weeks apart. However, early evidence of high vaccine effectiveness after the first dose and the emergence of the Alpha variant prompted the UK to extend the interval between doses to 12-weeks. In this study, we aim to quantify the impact of delaying the second vaccine dose on the epidemic in England. Methods: We used a previously described model of SARS-CoV-2 transmission, calibrated to English COVID-19 surveillance data including hospital admissions, hospital occupancy, seroprevalence data, and population-level PCR testing data using a Bayesian evidence synthesis framework. We modelled and compared the epidemic trajectory assuming that vaccine doses were administered 3-weeks apart against the real reported vaccine roll-out schedule. We estimated and compared the resulting number of daily infections, hospital admissions, and deaths. Scenarios spanning a range of vaccine effectiveness and waning assumptions were investigated. Findings: We estimate that delaying the interval between the first and second COVID-19 vaccine doses from 3- to 12-weeks prevented an average 58,000 COVID-19 hospital admissions and 10,100 deaths between 8th December 2020 and 13th September 2021. Similarly, we estimate that the 3-week strategy would have resulted in more infections and deaths compared to the 12-week strategy. Across all sensitivity analyses the 3-week strategy resulted in a greater number of hospital admissions. Interpretation: England’s delayed second dose vaccination strategy was informed by early real-world vaccine effectiveness data and a careful assessment of the trade-offs in the context of limited vaccine supplies in a growing epidemic. Our study shows that rapidly providing partial (single dose) vaccine-induced protection to a larger proportion of the population was successful in reducing the burden of COVID-19 hospitalisations and deaths. There is benefit in carefully considering and adapting guidelines in light of new emerging evidence and the population in question. Funding: National Institute for Health Research, UK Medical Research Council, Jameel Institute, Wellcome Trust, and UK Foreign, Commonwealth and Development Office, National Health and Medical Research Council
    corecore