99 research outputs found

    Structural and magnetic properties of rare-earth-free MnAl(MCNT)/Fe nanocomposite magnets processed by resin-bonding technique

    Get PDF
    In this study, the potential of multi-walled carbon nanotubes (MCNT) in processing rare-earth-free MnAl(MCNT)/Fe nanocomposite magnets was exploited through adopting a combination of surfactant-assisted milling and resin-bonding techniques. The required hard and soft magnetic phases such as MnAl(MCNT) and alpha-Fe, respectively, were individually subjected to surfactant-assisted high-energy ball milling. The surfactant-coated MnAl(MCNT) and Fe nanopowders, thus, obtained were characterized with respect to their structural and magnetic properties. Relatively, a very high coercivity, H-c (4.48 kOe), was obtained for the surfactant-coated MnAl(MCNT) powders after 6 h of milling, while in the case of Fe powders with high saturation magnetization, M-s (218.6 emu/g) was achieved at 3 h of surfactant-assisted milling. The MnAl(MCNT) powders with high H-c were mixed with the Fe powders of high M-s with different weight percentages: 0, 5 and 10. The nanocomposite powder mixtures were further milled for 1 h and then processed in the form of resin bonded magnets under aligning magnetic field of 20 kOe. The obtained bonded nanocomposite magnet, i.e. MnAl(MCNT) with 5 wt% of Fe addition demonstrated a good combination of high M-s (63.7 emu/g) and high H-c (4.46 kOe)

    Synthesis, Characterization and Physicochemical Properties of Biogenic Silver Nanoparticle-Encapsulated Chitosan Bionanocomposites

    Get PDF
    Green bionanocomposites have garnered considerable attention and applications in the pharmaceutical and packaging industries because of their intrinsic features, such as biocompatibility and biodegradability. The work presents a novel approach towards the combined effect of glycerol, tween 80 and silver nanoparticles (AgNPs) on the physicochemical properties of lyophilized chitosan (CH) scaffolds produced via a green synthesis method.The produced bionanocomposites were characterized with the help of Fourier transform infrared spectroscopy (FTIR) and Scanning electron microscopy (SEM). The swelling behavior, water vapor transmission rate, moisture retention capability, degradation in Hanks solution, biodegradability in soil, mechanical strength and electrochemical performance of the composites were evaluated. The addition of additives to the CH matrix alters the physicochemical and biological functioning of the matrix. Plasticized scaffolds showed an increase in swelling degree, water vapor transmission rate and degradability in Hank\u27s balanced solution compared to the blank chitosan scaffolds. The addition of tween 80 made the scaffolds more porous, and changes in physicochemical properties were observed. Green-synthesized AgNPs showed intensified antioxidant and antibacterial properties. Incorporating biogenic nanoparticles into the CH matrix enhances the polymer composites\u27 biochemical properties and increases the demand in the medical and biological sectors. These freeze-dried chitosan-AgNPs composite scaffolds had tremendous applications, especially in biomedical fields like wound dressing, tissue engineering, bone regeneration, etc

    Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

    No full text
    Vinod Vellora Thekkae Padil, Miroslav ÄŒerníkLaboratory of Chemical Remediation Processes, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, Studentská 1402/2, Liberec, Czech RepublicBackground: Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application.Methods: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 · 2H2O (1 mM, 2 mM, and 3 mM) and gum karaya (10 mg/mL) and was kept at 75°C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute.Results: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm−1 should be a stretching of CuO, which matches up to the B2u mode. The peaks at 525 cm−1 and 580 cm−1 indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 ± 1.6 nm, 5.5 ± 2.5 nm, and 7.8 ± 2.3 nm sizes were synthesized with various concentrations of CuCl2 · 2H2O (1 mM, 2 mM, and 3 mM). X-ray photoelectron spectroscopy profiles indicated that the O 1s and Cu 2p peak corresponding to the CuO nanoparticles were observed. The antibacterial activity of the synthesized nanoparticles was tested against Gram-negative and positive cultures.Conclusion: The formed CuO nanoparticles are small in size (4.8 ± 1.6 nm), highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes of synthesized CuO (7.8 ± 2.3 nm) nanoparticles. The smaller size of the CuO nanoparticles (4.8 ± 1.6 nm) was found to be yielding a maximum zone of inhibition compared to the larger size of synthesized CuO nanoparticles (7.8 ± 2.3 nm). The results also indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles.Keywords: gum karaya, CuO nanoparticles, XRD, FTIR, XPS, antibacterial activit

    Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application

    Get PDF
    Background: Copper oxide (CuO) nanoparticles have attracted huge attention due to catalytic, electric, optical, photonic, textile, nanofluid, and antibacterial activity depending on the size, shape, and neighboring medium. In the present paper, we synthesized CuO nanoparticles using gum karaya, a natural nontoxic hydrocolloid, by green technology and explored its potential antibacterial application. Methods: The CuO nanoparticles were synthesized by a colloid-thermal synthesis process. The mixture contained various concentrations of CuCl2 center dot 2H(2)O (1 mM, 2 mM, and 3 mM) and gum karaya (10 mg/mL) and was kept at 75 degrees C at 250 rpm for 1 hour in an orbital shaker. The synthesized CuO was purified and dried to obtain different sizes of the CuO nanoparticles. The well diffusion method was used to study the antibacterial activity of the synthesized CuO nanoparticles. The zone of inhibition, minimum inhibitory concentration, and minimum bactericidal concentration were determined by the broth microdilution method recommended by the Clinical and Laboratory Standards Institute. Results: Scanning electron microscopy analysis showed CuO nanoparticles evenly distributed on the surface of the gum matrix. X-ray diffraction of the synthesized nanoparticles indicates the formation of single-phase CuO with a monoclinic structure. The Fourier transform infrared spectroscopy peak at 525 cm(-1) should be a stretching of CuO, which matches up to the B-2u mode. The peaks at 525 cm(-1) and 580 cm(-1) indicated the formation of CuO nanostructure. Transmission electron microscope analyses revealed CuO nanoparticles of 4.8 +/- 1.6 nm, 5.5 +/- 2.5 nm, and 7.8 +/- 2.3 nm sizes were synthesized with various concentrations of CuCl2 center dot 2H(2)O (1 mM, 2 mM, and 3 mM). X-ray photoelectron spectroscopy profiles indicated that the O 1s and Cu 2p peak corresponding to the CuO nanoparticles were observed. The antibacterial activity of the synthesized nanoparticles was tested against Gram-negative and positive cultures. Conclusion: The formed CuO nanoparticles are small in size (4.8 +/- 1.6 nm), highly stable, and have significant antibacterial action on both the Gram classes of bacteria compared to larger sizes of synthesized CuO (7.8 +/- 2.3 nm) nanoparticles. The smaller size of the CuO nanoparticles (4.8 +/- 1.6 nm) was found to be yielding a maximum zone of inhibition compared to the larger size of synthesized CuO nanoparticles (7.8 +/- 2.3 nm). The results also indicate that increase in precursor concentration enhances an increase in particle size, as well as the morphology of synthesized CuO nanoparticles.Project OP VaVpI Center for Nanomaterials, Advanced Technologies and Innovation [CZ.1.05/2.1.00/01.0005]; Development of Research Teams of Research and Development Projects at the Technical University of Liberec [CZ.1.07/2.3.00/30.0024
    • …
    corecore