11 research outputs found

    āļ„āļ§āļēāļĄāļāđ‰āļēāļ§āļŦāļ™āđ‰āļēāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļŠāļĩāļ§āļĄāļ§āļĨāļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāļ”āđ‰āļ§āļĒāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ—āļēāļ‡āđ€āļ„āļĄāļĩāđ€āļžāļ·āđˆāļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļĨāļąāđˆāļ™āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžProgress in Chemical Pretreatment of Lignocellulose Biomass for Applications in Biorefinery

    No full text
    āļŠāļĩāļ§āļĄāļ§āļĨāļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāđ€āļ›āđ‡āļ™āđāļŦāļĨāđˆāļ‡āļ§āļąāļ•āļ–āļļāļ”āļīāļšāđ€āļžāļ·āđˆāļ­āļāļēāļĢāļœāļĨāļīāļ•āļžāļĨāļąāļ‡āļ‡āļēāļ™āļŦāļĄāļļāļ™āđ€āļ§āļĩāļĒāļ™āđāļĨāļ°āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļĨāļąāđˆāļ™āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāļŠāļģāļ„āļąāļ āļ‹āļķāđˆāļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļĨāļąāđˆāļ™āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāļ—āļĩāđˆāđ€āļ›āļĨāļĩāđˆāļĒāļ™āļ§āļąāļ•āļ–āļļāļ”āļīāļšāļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāđ€āļ›āđ‡āļ™āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļ•āđˆāļēāļ‡ āđ† āļ—āļĩāđˆāļĄāļĩāļĄāļđāļĨāļ„āđˆāļēāļŠāļđāļ‡ āđ€āļŠāđˆāļ™āđ€āļŠāļ·āđ‰āļ­āđ€āļžāļĨāļīāļ‡āļŠāļĩāļ§āļ āļēāļž āļŠāļĩāļ§āđ€āļ„āļĄāļĩāđāļĨāļ°āđ„āļšāđ‚āļ­āđ‚āļžāļĨāļĩāđ€āļĄāļ­āļĢāđŒ āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļœāļĨāļīāļ•āļ™āļąāđ‰āļ™āļ›āļĢāļ°āļāļ­āļšāļ”āđ‰āļ§āļĒāļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļŦāļĨāļąāļāļ„āļ·āļ­āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļŠāļĩāļ§āļĄāļ§āļĨ āđ„āļŪāđ‚āļ”āļĢāđ„āļĨāļ‹āļīāļŠ āļāļēāļĢāļŦāļĄāļąāļ āđāļĨāļ°āļāļēāļĢāļŠāļāļąāļ”āđāļĒāļāļŠāđˆāļ§āļ™āļœāļĨāļœāļĨāļīāļ• āļ‹āļķāđˆāļ‡āđƒāļ™āļ‚āļąāđ‰āļ™āļ•āļ­āļ™āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļŠāļĩāļ§āļĄāļ§āļĨāļ™āļąāđ‰āļ™āļĄāļĩāļ„āļ§āļēāļĄāļŠāļģāļ„āļąāļāļ•āđˆāļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ‚āļ”āļĒāļĢāļ§āļĄ āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļŠāļĩāļ§āļĄāļ§āļĨāļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāļĄāļĩāļĨāļąāļāļĐāļ“āļ°āļ—āļēāļ‡āđ€āļ„āļĄāļĩāđāļĨāļ°āļāļēāļĒāļ āļēāļžāļ—āļĩāđˆāđāļ‚āđ‡āļ‡āđāļĢāļ‡āļ—āļģāđƒāļŦāđ‰āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļ—āļģāļ‡āļēāļ™āļ‚āļ­āļ‡āđ€āļ­āļ™āđ„āļ‹āļĄāđŒāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļŪāđ‚āļ”āļĢāđ„āļĨāļ‹āļīāļŠāļĨāļ”āļĨāļ‡ āđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļŠāļĩāļ§āļĄāļ§āļĨāļĄāļĩāļŦāļĨāļēāļĒāļ§āļīāļ˜āļĩ āđ€āļŠāđˆāļ™ āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļ—āļēāļ‡āđ€āļ„āļĄāļĩ āļ—āļēāļ‡āļāļēāļĒāļ āļēāļž āļ—āļēāļ‡āļāļēāļĒāļ āļēāļž-āđ€āļ„āļĄāļĩ āđāļĨāļ°āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļœāļŠāļĄ āļ‹āļķāđˆāļ‡āļāļēāļĢāđ€āļĨāļ·āļ­āļāđƒāļŠāđ‰āļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļāđ‡āļˆāļ°āļ‚āļķāđ‰āļ™āļ­āļĒāļđāđˆāļāļąāļšāļŠāļ™āļīāļ”āļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāļ§āđˆāļēāđ€āļŦāļĄāļēāļ°āļŠāļĄāļāļąāļšāļ§āļīāļ˜āļĩāđƒāļ” āđāļĨāļ°āđ€āļ™āļ·āđˆāļ­āļ‡āļˆāļēāļāļ›āļĢāļīāļĄāļēāļ“āļ‚āļ­āļ‡āļĨāļīāļāđ‚āļ™āđ€āļ‹āļĨāļĨāļđāđ‚āļĨāļŠāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļŦāļĨāļ·āļ­āļ—āļīāđ‰āļ‡āļĄāļĩāļ›āļĢāļīāļĄāļēāļ“āļĄāļēāļāļˆāļķāļ‡āđ€āļāļīāļ”āđāļ™āļ§āļ„āļīāļ”āļ—āļĩāđˆāļˆāļ°āļĨāļ”āļ‚āļ­āļ‡āđ€āļŠāļĩāļĒāđ€āļŦāļĨāđˆāļēāļ™āļĩāđ‰āđ‚āļ”āļĒāļ™āļģāļĄāļēāđ€āļžāļīāđˆāļĄāļĄāļđāļĨāļ„āđˆāļēāđ€āļ›āđ‡āļ™āļœāļĨāļœāļĨāļīāļ•āđƒāļ™āļ­āļļāļ•āļŠāļēāļŦāļāļĢāļĢāļĄāļ›āļĨāļēāļĒāļ™āđ‰āļģāļ—āļĩāđˆāļŦāļĨāļēāļāļŦāļĨāļēāļĒ āļ™āļģāļĄāļēāļŠāļđāđˆāļĢāļđāļ›āđāļšāļšāļ—āļĩāđˆāđ€āļĢāļĩāļĒāļāļ§āđˆāļēāđ€āļĻāļĢāļĐāļāļāļīāļˆāļŠāļĩāļ§āļ āļēāļž āđ€āļĻāļĢāļĐāļāļāļīāļˆāļŦāļĄāļļāļ™āđ€āļ§āļĩāļĒāļ™ āđāļĨāļ°āđ€āļĻāļĢāļĐāļāļāļīāļˆāļŠāļĩāđ€āļ‚āļĩāļĒāļ§ (BCG Economy) āļŠāļ­āļ”āļ„āļĨāđ‰āļ­āļ‡āļāļąāļšāđ€āļ›āđ‰āļēāļŦāļĄāļēāļĒāļāļēāļĢāļžāļąāļ’āļ™āļēāļ—āļĩāđˆāļĒāļąāđˆāļ‡āļĒāļ·āļ™ (SDG) āļ‚āļ­āļ‡āļŠāļŦāļ›āļĢāļ°āļŠāļēāļŠāļēāļ•āļī (UN) āļˆāļķāļ‡āļĄāļĩāļāļēāļĢāđ€āļĨāļ·āļ­āļāđƒāļŠāđ‰āļŠāļēāļĢāđ€āļ„āļĄāļĩāļ—āļĩāđˆāļ™āļģāļĄāļēāļ›āļĢāļąāļšāļŠāļ āļēāļžāđ€āļ›āđ‡āļ™āļŠāļēāļĢāđ€āļ„āļĄāļĩāļ—āļĩāđˆāđ€āļ›āđ‡āļ™āļĄāļīāļ•āļĢāļ•āđˆāļ­āļŠāļīāđˆāļ‡āđāļ§āļ”āļĨāđ‰āļ­āļĄ (Green solvent) āđ€āļŠāđˆāļ™ āļŠāļēāļĢāđ„āļ­āļ­āļ­āļ™āļīāļāļĨāļīāļ„āļ§āļīāļ” (Ionic liquid) āđāļĨāļ°āļŠāļēāļĢāļĨāļ°āļĨāļēāļĒāļ”āļĩāļžāļĒāļđāđ€āļ—āļ„āļ•āļīāļ (DES) āđ‚āļ”āļĒāđƒāļ™āļšāļ—āļ„āļ§āļēāļĄāļ™āļĩāđ‰āļĄāļļāđˆāļ‡āđ€āļ™āđ‰āļ™āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ–āļķāļ‡āļ•āļąāļ§āđ€āļĨāļ·āļ­āļāļ‚āļ­āļ‡āļ§āļīāļ˜āļĩāļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāļŠāļĩāļ§āļĄāļ§āļĨāļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļ—āļēāļ‡āđ€āļ„āļĄāļĩāļ—āļĩāđˆāļĄāļĩāđƒāļ™āļ›āļąāļˆāļˆāļļāļšāļąāļ™āđāļĨāļ°āđ„āļ”āđ‰āļĢāļąāļšāļāļēāļĢāļžāļąāļ’āļ™āļēāļ§āļīāļˆāļąāļĒāļĄāļēāļ­āļĒāđˆāļēāļ‡āļ•āđˆāļ­āđ€āļ™āļ·āđˆāļ­āļ‡ āļĢāļ§āļĄāđ„āļ›āļ–āļķāļ‡āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ‚āđ‰āļ­āļ”āļĩāļ‚āđ‰āļ­āđ€āļŠāļĩāļĒ āđāļĨāļ°āđāļ™āļ°āļ™āļģāļˆāļļāļ”āļ—āļĩāđˆāļ„āļ§āļĢāļžāļąāļ’āļ™āļēāļ‚āļ­āļ‡āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢ āđ€āļžāļ·āđˆāļ­āļžāļąāļ’āļ™āļēāđ€āļ›āđ‡āļ™āļ­āļ‡āļ„āđŒāļ„āļ§āļēāļĄāļĢāļđāđ‰āđƒāļ™āļāļēāļĢāļ§āļīāļˆāļąāļĒāļ•āđˆāļ­āļĒāļ­āļ”āđāļĨāļ°āđ€āļ›āđ‡āļ™āļ‚āđ‰āļ­āļĄāļđāļĨāđƒāļ™āļāļēāļĢāļ›āļĢāļ°āļĒāļļāļāļ•āđŒāđƒāļŠāđ‰āļāļēāļĢāļ›āļĢāļąāļšāļŠāļ āļēāļžāđƒāļ™āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļāļĨāļąāđˆāļ™āļ—āļēāļ‡āļŠāļĩāļ§āļ āļēāļžāļ•āđˆāļ­āđ„āļ›āđƒāļ™āļ­āļ™āļēāļ„āļ•Lignocellulose biomass is raw material for production of renewable energy and biorefining process. Biorefining process converts lignocellulose biomass to various value-added products, such as biofuels, biochemical, and biopolymers. This process is composed of multi-step reactions including pretreatment, hydrolysis, fermentation and product recovery. Among these 4 steps, pretreatment is important to the feasibility of the overall process, because lignocellulose has strong chemical and physical characteristics, which cellulase inefficiently accesses and hydrolyzes biomass. Currently, there are many pretreatment methods, such as chemical pretreatment, physical pretreatment, physical-chemical pretreatment, and combined pretreatment method. The selection of the appropriate method depends on the type of lignocellulose. Due to the abundant amount of lignocellulose in nature, it is necessary to develop the biorefining process to convert the waste to value-added products. This concept agrees well with the Bio economy, Circular economy, and Green economy (BCG Economy) to achieve the sustainable development goals (SDG) of United Nations (UN). Therefore, green chemicals for pretreatment are selected with environmentally friendly property, such as ionic liquid and Deep Eutectic Solutions (DES). This review describes the options of chemical pretreatment methods that are developed by researchers. The pros and cons of each pretreatment method are discussed and the room for improvement is suggested. The knowledge obtained from this review will benefit to provide information for further development and research in biorefining process in the future

    Review: The Bioavailability Activity of Centella asiatica

    Get PDF
    Centella asiatica (Bao-bog, Tiger Herbal, Pennywort, Gotu kola) has been announced as one of five “Thailand Champion Herbal Products (TCHP)” by the Department for Development of Thai Transitional and Alternative Medicine, Ministry of Public Health. C. asiatica has been investigated for its bioavailability activity, antimicrobial activity, antioxidant activity, anti-inflammatory activity, wound healing activity and anticancer activity. C. asiatica contains many types of active compounds: terpenoids, terpenoids and phenols. Thus, C. asiatica has high potential to be applied in pharmaceutical, cosmetic and food industries

    Detection of PinX1 and 14-3-3 in the shrimp (Litopenaeus vannamei) and study on gene expressions during viral infection and environmental stresses

    No full text
    Two genes, PinX1 and 14-3-3, have been isolated and investigated for their expression in shrimp, Litopenaeusvannamei when infected with white spot syndrome virus (WSSV) and subjected to environmental stresses. A putative PinX1protein of 180 amino acids showed a 65% similarity to the zebra fish PinX1 protein (Danio rerio) and had a G-patch domainsimilar to human PinX1. The sequence of a full length cDNA of 14-3-3 has a very high similarity (96%) to other shrimp 14-3-3-like protein (Feneropenaeus merguiensis and Penaeus monodon). Transcripts of PinX1 and 14-3-3 were up regulated in thehemolymph of viral infected shrimp with the highest expression level at 24 hrs p.i. Shrimp showing mortality characteristicshad very low expression of these two genes. In animals subjected to a combined low temperature (19-20°C) and low oxygen(DO 1-1.5 mg/L) for 24 hrs, an interesting result was that the transcript of PinX1 was drastically increased. In contrast, 14-3-3did not show any significant differences between the six treatments. The results of this work indicated that the PinX1 proteinmight play an important role in the shrimp response to viral infection and repose to certain stresses. In contrast the 14-3-3protein might play a particularly important role in the immune defended mechanisms of viral infections of shrimps

    Comparative evaluation of DNA extraction from rice’s root-associated bacterial consortium for population structure study

    No full text
    Understanding in population structure of a plant’s root-associated microbiome is applied in good practices in agricultural activities to improve production yields and enhance plant immune responses. The molecular analysis of bacterial populations inhabited in soil faces difficulties in obtaining high yield and high purity of DNA, and different commercial DNA extraction kits have been developed for this purpose. This study focuses on the comparison of DNA extraction of six different rice root-associated bacterial consortium using three commercial kits with two key technologies, spin-column adsorption and magnetic bead adsorption. The quality and quantity of genomic DNA obtained from these extraction methods were analyzed and compared based on DNA concentration, DNA purity and efficiency to be used as a template for 16sRNA amplification. The results showed that the extraction kit with magnetic bead adsorption technology showed the highest concentration (101.32 ng/ξl) compared to other DNA extraction kits (32.67 and 1.89 ng/ξl). The purity values (A260/A280) were assessed by using Nano-drop spectrophotometer and resulted in purities of nucleic acids in the range of 1.4-1.7. Thus, it was concluded that the extracted DNA obtained from the extraction kit with magnetic bead adsorption technology can be valuable for molecular analysis of microbial communities present in the soil

    Identification of bacterial species from healthy wood of

    No full text
    Agarwood is one of the most expensive, sacred and valuable woods used in the biotechnology industry. This natural raw material is in high demand as a commodity and can be used to manufacture a variety of products. Isolating a microbe from its environment is crucial because several bacterial strains can produce novel compounds for biotechnological applications. Exploration of bacterial strains, such as bacterial endophytes, has been associated with bioactive compounds of the agarwood plant. The purpose of this study was to isolate and identify bacteria from Agarwood trees in the Kaeng Hang Maeo Sub-district of Chanthaburi Province, Thailand by using molecular biology techniques. A colony PCR technique without prior DNA extraction for rapid and simple detection of bacteria was performed. After the DNA sequence analysis, the results showed that most populations in the normal layer are belonged to Pantoea dispersa (99%). Through analysis of phylogenetic tree by neighbor-joining method, the sequences of the 16s rRNA gene were analyzed to understand evolutionary relationships of bacteria found in agarwood. In conclusion, good amplification of the 16s rRNA sequence (1.5 kb) was detected with the specificity of the target sequences of the 16s RNA. In addition, the isolated bacterial strains are the most common species in agarwood, however, there has been no previous research on isolating these bacterial strains in Aquilaria crassna

    Improvement of potassium permanganate pretreatment by enzymatic saccharification of rice straw for production of biofuels

    No full text
    Commonly, the agricultural waste, i.e. lignocellulosic biomass is disposed through combustion causing air pollution with production of PM2.5 and PM10 particles. However, it has been found that these biomasses can be used as source for the production of biofuels and other valuable biochemicals. Though deconstruction of lignocellulosic biomass is challenging due to its complex structure. In this study, rice straw (RS) was pretreated using potassium permanganate (KMnO4) to enhance the enzymatic saccharification efficiency. The study was carried out by varying the operational factors in pretreatment, including temperature (30-90°C), time (30-360 min) and concentration of KMnO4 (0.5-3.0, % w/v), respectively, based on Box-Behnken design (BBD). Through multi-regression analysis of the experimental data obtained after pretreatment, the optimum conditions were determined. The optimum conditions for temperature, time and potassium permanganate concentration were 48.09°C, 360 min, and 1.36% w/v, respectively. The saccharifications of pretreatment and untreated rice straw were carried out using Cellic Ctec2. The reducing sugar was determined by using DNS method and the yields of the untreated and pretreated RS were 32.38 and 49.011 mg/mL, respectively. The results showed that the sugar for pretreated RS were 1.51 fold times higher compared to untreated RS. Therefore, this work illustrates the pretreatment efficiency for KMnO4 to enhance the reducing sugar yield during saccharification, which can be used for biofuel and value-added product productions
    corecore