36 research outputs found

    Generation of Antibodies Selectively Recognizing Epitopes in a Formaldehyde-Fixed Cell-Surface Antigen Using Virus-like Particle Display and Hybridoma Technology

    Get PDF
    Efficient induction of target-specific antibodies can be elicited upon immunization with highly immunogenic virus-like particles (VLPs) decorated with desired membrane-anchored target antigens (Ags). However, for example, for diagnostic purposes, monoclonal antibodies (mAbs) are required to enable the histological examination of formaldehyde-fixed paraffin-embedded (FFPE) biopsy tissue samples. Aiming at the generation of FFPE-antigen-specific mAbs and as a proof of concept (POC), we first established a simplified protocol using only formaldehyde and 90 °C heat fixation (FF90) of cells expressing the target Ag nerve growth factor receptor (NGFR). The FF90 procedure was validated using flow cytometric analysis and two mAbs recognizing either the native and FFPE-Ag or exclusively the native Ag. C-terminally truncated NGFR (trNGFR)-displaying native and FF90-treated VLPs derived from HIV-1 did not reveal distinctive changes in particle morphology using transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis. Mice were subsequently repetitively immunized with trNGFR-decorated FF90-VLPs and hybridoma technology was used to establish mAb-producing cell clones. In multiple screening rounds, nine cell clones were identified producing mAbs distinctively recognizing epitopes in FF90- and FFPE-NGFR. This POC of a new methodology should foster the future generation of mAbs selectively targeting FFPE-fixed cell-surface Ags

    Модель смешанного обучения в преподавании дисциплины "Методы получения чистых веществ"

    Get PDF
    Данная работа посвящена использованию модели смешанного обучения в преподавании дисциплины "Методы получения чистых веществ" на английском языке. Исследовались элементы смешанного обучения, стратегия организации образовательного процесса, план учебной деятельности. Подробно описаны виды учебной деятельности и подобраны формы организации процесса. Для каждого вида деятельности определены уровни таксономии Блума. Показаны преимущества модели смешанного обучения в преподавании лабораторных работ для студентов инженерной специальности

    Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles

    Get PDF
    Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g–1) upon the first administration to 15% ID g–1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation

    What scans we will read: imaging instrumentation trends in clinical oncology

    Get PDF
    Oncological diseases account for a significant portion of the burden on public healthcare systems with associated costs driven primarily by complex and long-lasting therapies. Through the visualization of patient-specific morphology and functional-molecular pathways, cancerous tissue can be detected and characterized non- invasively, so as to provide referring oncologists with essential information to support therapy management decisions. Following the onset of stand-alone anatomical and functional imaging, we witness a push towards integrating molecular image information through various methods, including anato-metabolic imaging (e.g., PET/ CT), advanced MRI, optical or ultrasound imaging. This perspective paper highlights a number of key technological and methodological advances in imaging instrumentation related to anatomical, functional, molecular medicine and hybrid imaging, that is understood as the hardware-based combination of complementary anatomical and molecular imaging. These include novel detector technologies for ionizing radiation used in CT and nuclear medicine imaging, and novel system developments in MRI and optical as well as opto-acoustic imaging. We will also highlight new data processing methods for improved non-invasive tissue characterization. Following a general introduction to the role of imaging in oncology patient management we introduce imaging methods with well-defined clinical applications and potential for clinical translation. For each modality, we report first on the status quo and point to perceived technological and methodological advances in a subsequent status go section. Considering the breadth and dynamics of these developments, this perspective ends with a critical reflection on where the authors, with the majority of them being imaging experts with a background in physics and engineering, believe imaging methods will be in a few years from now. Overall, methodological and technological medical imaging advances are geared towards increased image contrast, the derivation of reproducible quantitative parameters, an increase in volume sensitivity and a reduction in overall examination time. To ensure full translation to the clinic, this progress in technologies and instrumentation is complemented by progress in relevant acquisition and image-processing protocols and improved data analysis. To this end, we should accept diagnostic images as “data”, and – through the wider adoption of advanced analysis, including machine learning approaches and a “big data” concept – move to the next stage of non-invasive tumor phenotyping. The scans we will be reading in 10 years from now will likely be composed of highly diverse multi- dimensional data from multiple sources, which mandate the use of advanced and interactive visualization and analysis platforms powered by Artificial Intelligence (AI) for real-time data handling by cross-specialty clinical experts with a domain knowledge that will need to go beyond that of plain imaging

    Automated Generation of Reliable Blood Velocity Parameter Maps from Contrast-Enhanced Ultrasound Data

    Get PDF
    Objectives. The purpose of this study was the automated generation and validation of parametric blood flow velocity maps, based on contrast-enhanced ultrasound (CEUS) scans. Materials and Methods. Ethical approval for animal experiments was obtained. CEUS destruction-replenishment sequences were recorded in phantoms and three different tumor xenograft mouse models. Systematic pixel binning and intensity averaging was performed to generate parameter maps of blood flow velocities with different pixel resolution. The 95% confidence interval of the mean velocity, calculated on the basis of the whole tumor segmentation, served as ground truth for the different parameter maps. Results. In flow phantoms the measured mean velocity values were only weakly influenced by the pixel resolution and correlated with real velocities (r2≥0.94,  p<0.01). In tumor xenografts, however, calculated mean velocities varied significantly (p<0.0001), depending on the parameter maps’ resolution. Pixel binning was required for all in vivo measurements to obtain reliable parameter maps and its degree depended on the tumor model. Conclusion. Systematic pixel binning allows the automated identification of optimal pixel resolutions for parametric maps, supporting textural analysis of CEUS data. This approach is independent from the ultrasound setup and can be implemented in the software of other (clinical) ultrasound devices

    The Theranostic Path to Personalized Nanomedicine

    Get PDF
    Advances in nanotechnology and chemical engineering have led to the development of many different drug delivery systems. These 1–100(0)-nm-sized carrier materials aim to increase drug concentrations at the pathological site, while avoiding their accumulation in healthy non-target tissues, thereby improving the balance between the efficacy and the toxicity of systemic (chemo-)therapeutic interventions. An important advantage of such nanocarrier materials is the ease of incorporating both diagnostic and therapeutic entities within a single formulation, enabling them to be used for theranostic purposes. We here describe the basic principles of using nanomaterials for targeting therapeutic and diagnostic agents to pathological sites, and we discuss how nanotheranostics and image-guided drug delivery can be used to personalize nanomedicine treatments

    Advanced Ultrasound Technologies for Diagnosis and Therapy

    Get PDF
    Ultrasound is among the most rapidly advancing imaging techniques. Functional methods such as elastography have been clinically introduced, and tissue characterization is improved by contrast-enhanced scans. Here, novel super-resolution techniques provide unique morphological and functional insights into tissue vascularisation. Functional analyses are complemented with molecular ultrasound imaging, to visualize markers of inflammation and angiogenesis. The full potential of diagnostic ultrasound may become apparent by integrating these multiple imaging features in radiomics approaches. Emerging interest in ultrasound also results from its therapeutic potential. Various applications on tumor ablation with high intensity focused ultrasound (HIFU) are clinically evaluated and its performance strongly benefits from the integration into Magnetic Resonance Imaging (MRI). Additionally, oscillating microbubbles mediate sonoporation to open biological barriers, thus improving the delivery of drugs or nucleic acids that are co-administered or co-formulated with microbubbles. This article provides an overview of recent developments in diagnostic and therapeutic ultrasound, highlighting multiple innovation tracks and their translational potential

    Tumor targeting via EPR: Strategies to enhance patient responses

    Get PDF
    The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5–10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses
    corecore