54 research outputs found

    Drop Traffic in Microfluidic Ladder Networks with Fore-Aft Structural Asymmetry

    Full text link
    We investigate the dynamics of pairs of drops in microfluidic ladder networks with slanted bypasses, which break the fore-aft structural symmetry. Our analytical results indicate that unlike symmetric ladder networks, structural asymmetry introduced by a single slanted bypass can be used to modulate the relative drop spacing, enabling them to contract, synchronize, expand, or even flip at the ladder exit. Our experiments confirm all these behaviors predicted by theory. Numerical analysis further shows that while ladder networks containing several identical bypasses are limited to nearly linear transformation of input delay between drops, mixed combination of bypasses can cause significant non-linear transformation enabling coding and decoding of input delays.Comment: 4 pages, 5 figure

    The effect of tidal forcing on biogeochemical processes in intertidal salt marsh sediments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early diagenetic processes involved in natural organic matter (NOM) oxidation in marine sediments have been for the most part characterized after collecting sediment cores and extracting porewaters. These techniques have proven useful for deep-sea sediments where biogeochemical processes are limited to aerobic respiration, denitrification, and manganese reduction and span over several centimeters. In coastal marine sediments, however, the concentration of NOM is so high that the spatial resolution needed to characterize these processes cannot be achieved with conventional sampling techniques. In addition, coastal sediments are influenced by tidal forcing that likely affects the processes involved in carbon oxidation.</p> <p>Results</p> <p>In this study, we used in situ voltammetry to determine the role of tidal forcing on early diagenetic processes in intertidal salt marsh sediments. We compare ex situ measurements collected seasonally, in situ profiling measurements, and in situ time series collected at several depths in the sediment during tidal cycles at two distinct stations, a small perennial creek and a mud flat. Our results indicate that the tides coupled to the salt marsh topography drastically influence the distribution of redox geochemical species and may be responsible for local differences noted year-round in the same sediments. Monitoring wells deployed to observe the effects of the tides on the vertical component of porewater transport reveal that creek sediments, because of their confinements, are exposed to much higher hydrostatic pressure gradients than mud flats.</p> <p>Conclusion</p> <p>Our study indicates that iron reduction can be sustained in intertidal creek sediments by a combination of physical forcing and chemical oxidation, while intertidal mud flat sediments are mainly subject to sulfate reduction. These processes likely allow microbial iron reduction to be an important terminal electron accepting process in intertidal coastal sediments.</p

    Image-based closed-loop feedback for highly mono-dispersed microdroplet production

    Full text link
    Abstract Micron-scale droplets isolated by an immiscible liquid can provide miniaturised reaction vessels which can be manipulated in microfluidic networks, and has seen a rapid growth in development. In many experiments, the precise volume of these microdroplets is a critical parameter which can be influenced by many external factors. In this work, we demonstrate the combination of imaging-based feedback and pressure driven pumping to accurately control the size of microdroplets produced in a microfluidic device. The use of fast-response, pressure-driving pumps allows the microfluidic flow to be quickly and accurately changed, while directly measuring the droplet size allows the user to define the more meaningful parameters of droplet size and generation frequency rather than flow rates or pressures. The feedback loop enables the drift correction of pressure based pumps, and leads to a large increase in the mono-dispersity of the droplets produced over long periods. We also show how this can be extended to control multiple liquid flows, allowing the frequency of droplet formation or the average concentration of living cells per droplet to be controlled and kept constant
    • …
    corecore