22 research outputs found
Common Origin of Soft mu-tau and CP Breaking in Neutrino Seesaw and the Origin of Matter
Neutrino oscillation data strongly support mu-tau symmetry as a good
approximate flavor symmetry of the neutrino sector, which has to appear in any
viable theory for neutrino mass-generation. The mu-tau breaking is not only
small, but also the source of Dirac CP-violation. We conjecture that both
discrete mu-tau and CP symmetries are fundamental symmetries of the seesaw
Lagrangian (respected by interaction terms), and they are only softly broken,
arising from a common origin via a unique dimension-3 Majorana mass-term of the
heavy right-handed neutrinos. From this conceptually attractive and simple
construction, we can predict the soft mu-tau breaking at low energies, leading
to quantitative correlations between the apparently two small deviations
\theta_{23} - 45^o and \theta_{13} - 0^o. This nontrivially connects the
on-going measurements of mixing angle \theta_{23} with the upcoming
experimental probes of \theta_{13}. We find that any deviation of \theta_{23} -
45^o must put a lower limit on \theta_{13}. Furthermore, we deduce the low
energy Dirac and Majorana CP violations from a common soft-breaking phase
associated with mu-tau breaking in the neutrino seesaw. Finally, from the soft
CP breaking in neutrino seesaw we derive the cosmological CP violation for the
baryon asymmetry via leptogenesis. We fully reconstruct the leptogenesis
CP-asymmetry from the low energy Dirac CP phase and establish a direct link
between the cosmological CP-violation and the low energy Jarlskog invariant. We
predict new lower and upper bounds on the \theta_{13} mixing angle, 1^o <
\theta_{13} < 6^o. In addition, we reveal a new hidden symmetry that dictates
the solar mixing angle \theta_12 by its group-parameter, and includes the
conventional tri-bimaximal mixing as a special case, allowing deviations from
it.Comment: 60pp, JCAP in Press, v2: only minor stylistic refinements (added Daya
Bay's future sensitivity in Figs.2+8, shortened some eqs, added new
Appendix-A and some references), comments are welcome
On the impact of systematical uncertainties for the CP violation measurement in superbeam experiments
Superbeam experiments can, in principle, achieve impressive sensitivities for
CP violation in neutrino oscillations for large . We study how
those sensitivities depend on assumptions about systematical uncertainties. We
focus on the second phase of T2K, the so-called T2HK experiment, and we
explicitly include a near detector in the analysis. Our main result is that
even an idealised near detector cannot remove the dependence on systematical
uncertainties completely. Thus additional information is required. We identify
certain combinations of uncertainties, which are the key to improve the
sensitivity to CP violation, for example the ratio of electron to muon neutrino
cross sections and efficiencies. For uncertainties on this ratio larger than
2%, T2HK is systematics dominated. We briefly discuss how our results apply to
a possible two far detector configuration, called T2KK. We do not find a
significant advantage with respect to the reduction of systematical errors for
the measurement of CP violation for this setup.Comment: 30 pages, 10 figures, version accepted for publication in JHE
, and the neutrino mass hierarchy at a double baseline Li/B -Beam
We consider a -Beam facility where Li and B ions are
accelerated at , accumulated in a 10 Km storage ring and let
decay, so as to produce intense and beams. These beams
illuminate two iron detectors located at Km and
Km, respectively. The physics potential of this setup is analysed in full
detail as a function of the flux. We find that, for the highest flux ( ion decays per year per baseline), the sensitivity to
reaches ; the sign of
the atmospheric mass difference can be identified, regardless of the true
hierarchy, for ; and, CP-violation
can be discovered in 70% of the -parameter space for , having some sensitivity to CP-violation down to
for .Comment: 35 pages, 20 figures. Minor changes, matches the published versio
Neutrino Beams From Electron Capture at High Gamma
We investigate the potential of a flavor pure high gamma electron capture
electron neutrino beam directed towards a large water cherenkov detector with
500 kt fiducial mass. The energy of the neutrinos is reconstructed by the
position measurement within the detector and superb energy resolution
capabilities could be achieved. We estimate the requirements for such a
scenario to be competitive to a neutrino/anti-neutrino running at a neutrino
factory with less accurate energy resolution. Although the requirements turn
out to be extreme, in principle such a scenario could achieve as good abilities
to resolve correlations and degeneracies in the search for sin^2(2 theta_13)
and delta_CP as a standard neutrino factory experiment.Comment: 21 pages, 7 figures, revised version, to appear in JHEP, Fig.7
extended, minnor changes, results unchange
Status and perspectives of short baseline studies
The study of flavor changing neutrinos is a very active field of research. I
will discuss the status of ongoing and near term experiments investigating
neutrino properties at short distances from the source. In the next few years,
the Double Chooz, RENO and Daya Bay reactor neutrino experiments will start
looking for signatures of a non-zero value of the mixing angle
with much improved sensitivities. The MiniBooNE experiment is investigating the
LSND anomaly by looking at both the and
appearance channels. Recent results on
cross section measurements will be discussed briefly.Comment: 6 pages, 2 figures, to appear in the proceedings of the 11th
International Conference on Topics in Astroparticle and Underground Physics
(TAUP 2009), Rome, Italy, 1-5 July 200
Perturbation Theory of Neutrino Oscillation with Nonstandard Neutrino Interactions
We discuss various physics aspects of neutrino oscillation with non-standard
interactions (NSI). We formulate a perturbative framework by taking \Delta
m^2_{21} / \Delta m^2_{31}, s_{13}, and the NSI elements \epsilon_{\alpha
\beta} (\alpha, \beta = e, \mu, \tau) as small expansion parameters of the same
order \epsilon. Within the \epsilon perturbation theory we obtain the S matrix
elements and the neutrino oscillation probability formula to second order
(third order in \nu_e related channels) in \epsilon. The formula allows us to
estimate size of the contribution of any particular NSI element
\epsilon_{\alpha beta} to the oscillation probability in arbitrary channels,
and gives a global bird-eye view of the neutrino oscillation phenomena with
NSI. Based on the second-order formula we discuss how all the conventional
lepton mixing as well as NSI parameters can be determined. Our results shows
that while \theta_{13}, \delta, and the NSI elements in \nu_e sector can in
principle be determined, complete measurement of the NSI parameters in the
\nu_\mu - \nu_\tau sector is not possible by the rate only analysis. The
discussion for parameter determination and the analysis based on the matter
perturbation theory indicate that the parameter degeneracy prevails with the
NSI parameters. In addition, a new solar-atmospheric variable exchange
degeneracy is found. Some general properties of neutrino oscillation with and
without NSI are also illuminated.Comment: manuscript restructured, discussion of new type of parameter
degeneracy added. 47 page
Optimized Two-Baseline Beta-Beam Experiment
We propose a realistic Beta-Beam experiment with four source ions and two
baselines for the best possible sensitivity to theta_{13}, CP violation and
mass hierarchy. Neutrinos from 18Ne and 6He with Lorentz boost gamma=350 are
detected in a 500 kton water Cerenkov detector at a distance L=650 km (first
oscillation peak) from the source. Neutrinos from 8B and 8Li are detected in a
50 kton magnetized iron detector at a distance L=7000 km (magic baseline) from
the source. Since the decay ring requires a tilt angle of 34.5 degrees to send
the beam to the magic baseline, the far end of the ring has a maximum depth of
d=2132 m for magnetic field strength of 8.3 T, if one demands that the fraction
of ions that decay along the straight sections of the racetrack geometry decay
ring (called livetime) is 0.3. We alleviate this problem by proposing to trade
reduction of the livetime of the decay ring with the increase in the boost
factor of the ions, such that the number of events at the detector remains
almost the same. This allows to substantially reduce the maximum depth of the
decay ring at the far end, without significantly compromising the sensitivity
of the experiment to the oscillation parameters. We take 8B and 8Li with
gamma=390 and 656 respectively, as these are the largest possible boost factors
possible with the envisaged upgrades of the SPS at CERN. This allows us to
reduce d of the decay ring by a factor of 1.7 for 8.3 T magnetic field.
Increase of magnetic field to 15 T would further reduce d to 738 m only. We
study the sensitivity reach of this two baseline two storage ring Beta-Beam
experiment, and compare it with the corresponding reach of the other proposed
facilities.Comment: 17 pages, 3 eps figures. Minor changes, matches version accepted in
JHE
Theory of neutrinoless double beta decay
Neutrinoless double beta decay, which is a very old and yet elusive process,
is reviewed. Its observation will signal that lepton number is not conserved
and the neutrinos are Majorana particles. More importantly it is our best hope
for determining the absolute neutrino mass scale at the level of a few tens of
meV. To achieve the last goal certain hurdles have to be overcome involving
particle, nuclear and experimental physics. Nuclear physics is important for
extracting the useful information from the data. One must accurately evaluate
the relevant nuclear matrix elements, a formidable task. To this end, we review
the sophisticated nuclear structure approaches recently been developed, which
give confidence that the needed nuclear matrix elements can be reliably
calculated. From an experimental point of view it is challenging, since the
life times are long and one has to fight against formidable backgrounds. If a
signal is found, it will be a tremendous accomplishment. Then, of course, the
real task is going to be the extraction of the neutrino mass from the
observations. This is not trivial, since current particle models predict the
presence of many mechanisms other than the neutrino mass, which may contribute
or even dominate this process. We will, in particular, consider the following
processes: (i)The neutrino induced, but neutrino mass independent contribution.
(ii)Heavy left and/or right handed neutrino mass contributions.
(iii)Intermediate scalars (doubly charged etc). (iv)Supersymmetric (SUSY)
contributions. We will show that it is possible to disentangle the various
mechanisms and unambiguously extract the important neutrino mass scale, if all
the signatures of the reaction are searched in a sufficient number of nuclear
isotopes.Comment: 104 pages, 6 tables, 25 figures.References added. To appear in ROP
(Reports on Progress in Physics), copyright RO
Recommended from our members
Yields and production rates of cosmogenic <sup>9</sup>Li and <sup>8</sup>He measured with the Double Chooz near and far detectors
The yields and production rates of the radioisotopes 9Li and 8He created by cosmic muon spallation on 12C, have been measured by the two detectors of the Double Chooz experiment. The identical detectors are located at separate sites and depths, which means that they are subject to different muon spectra. The near (far) detector has an overburden of ∼120 m.w.e. (∼300 m.w.e.) corresponding to a mean muon energy of 32.1 ± 2.0 GeV (63.7 ± 5.5 GeV). Comparing the data to a detailed simulation of the 9Li and 8He decays, the contribution of the 8He radioisotope at both detectors is found to be compatible with zero. The observed 9Li yields in the near and far detectors are 5.51 ± 0.51 and 7.90 ± 0.51, respectively, in units of 10−8μ−1g−1cm2. The shallow overburdens of the near and far detectors give a unique insight when combined with measurements by KamLAND and Borexino to give the first multi-experiment, data driven relationship between the 9Li yield and the mean muon energy according to the power law Y=Y0(〈Eμ〉/1GeV)α¯, giving α¯=0.72±0.06 and Y0 = (0.43 ± 0.11) × 10−8μ−1g−1cm2. This relationship gives future liquid scintillator based experiments the ability to predict their cosmogenic 9Li background rates
Topical Review on "Beta-beams"
Neutrino physics is traversing an exciting period, after the important
discovery that neutrinos are massive particles, that has implications from
high-energy physics to cosmology. A new method for the production of intense
and pure neutrino beams has been proposed recently: the ``beta-beam''. It
exploits boosted radioactive ions decaying through beta-decay. This novel
concept has been the starting point for a new possible future facility. Its
main goal is to address the crucial issue of the existence of CP violation in
the lepton sector. Here we review the status and the recent developments with
beta-beams. We discuss the original, the medium and high-energy scenarios as
well as mono-chromatic neutrino beams produced through ion electron-capture.
The issue of the degeneracies is mentioned. An overview of low energy
beta-beams is also presented. These beams can be used to perform experiments of
interest for nuclear structure, for the study of fundamental interactions and
for nuclear astrophysics.Comment: Topical Review for Journal of Physics G: Nuclear and Particle
Physics, published version, minor corrections, references adde