7 research outputs found

    Results on light dark matter particles with a low-threshold CRESST-II detector

    Get PDF
    The CRESST-II experiment uses cryogenic detectors to search for nuclear recoil events induced by the elastic scattering of dark matter particles in CaWO4_4 crystals. Given the low energy threshold of our detectors in combination with light target nuclei, low mass dark matter particles can be probed with high sensitivity. In this letter we present the results from data of a single detector module corresponding to 52 kg live days. A blind analysis is carried out. With an energy threshold for nuclear recoils of 307 eV we substantially enhance the sensitivity for light dark matter. Thereby, we extend the reach of direct dark matter experiments to the sub-region and demonstrate that the energy threshold is the key parameter in the search for low mass dark matter particles.Comment: 8 pages, 8 figure

    Limits on Dark Matter Effective Field Theory Parameters with CRESST-II

    Full text link
    CRESST is a direct dark matter search experiment, aiming for an observation of nuclear recoils induced by the interaction of dark matter particles with cryogenic scintillating calcium tungstate crystals. Instead of confining ourselves to standard spin-independent and spin-dependent searches, we re-analyze data from CRESST-II using a more general effective field theory (EFT) framework. On many of the EFT coupling constants, improved exclusion limits in the low-mass region (< 3-4 GeV) are presented.Comment: 7 pages, 9 figure
    corecore