104 research outputs found

    Antifungal Activity of Type III Dental Gypsum Incorporated with 3-iodo-2- Propynyl-Butylcarbamate

    Full text link
    The fungal growth on dental model can damage and affect the physical appearance of the gypsum. Fungi can be transferred among patients and dental personnel. Moreover, they relate to numerous illnesses. Thus, the development of antifungal dental gypsum is required to avoid the fungal growth on dental models. This study evaluated antifungal properties of 3-iodo-2-propynyl-butylcarbamate (IPBC) incorporated into type III dental gypsum. Three types of dental gypsum (Sirius, Ultima, France, 0.005% w/w IPBC and non-IPBC Siam Moulding Plaster, Thailand) were tested according to modified ASTM G 21-96 method with Penicillium notatum MI-311, Aspergillus flavus MI-321, and Aspergillus spp. isolated from orthodontic models. 50 ÎŒL of spore suspension of each fungus (104CFU/mL) was dropped on the prepared gypsum samples and incubated at room temperature, ≄85% relative humidity for 28 days. Fungal growth was visually scored. No fungal growth was observed on IPBC gypsum while 2 strains of Aspergillus spp. could be found on sirius gypsum. Type III dental gypsum incorporated with IPBC shows significant antifungal activity (p < .001) compared with non-IPBC and Sirius groups. This developed gypsum with IPBC can be used to fabricate dental models to prevent any damages from fungal growth

    Linear response of mutans streptococci to increasing frequency of xylitol chewing gum use: a randomized controlled trial [ISRCTN43479664]

    Get PDF
    BACKGROUND: Xylitol is a naturally occurring sugar substitute that has been shown to reduce the level of mutans streptococci in plaque and saliva and to reduce tooth decay. It has been suggested that the degree of reduction is dependent on both the amount and the frequency of xylitol consumption. For xylitol to be successfully and cost-effectively used in public health prevention strategies dosing and frequency guidelines should be established. This study determined the reduction in mutans streptococci levels in plaque and unstimulated saliva to increasing frequency of xylitol gum use at a fixed total daily dose of 10.32 g over five weeks. METHODS: Participants (n = 132) were randomized to either active groups (10.32 g xylitol/day) or a placebo control (9.828 g sorbitol and 0.7 g maltitol/day). All groups chewed 12 pieces of gum per day. The control group chewed 4 times/day and active groups chewed xylitol gum at a frequency of 2 times/day, 3 times/day, or 4 times/day. The 12 gum pieces were evenly divided into the frequency assigned to each group. Plaque and unstimulated saliva samples were taken at baseline and five-weeks and were cultured on modified Mitis Salivarius agar for mutans streptococci enumeration. RESULTS: There were no significant differences in mutans streptococci level among the groups at baseline. At five-weeks, mutans streptococci levels in plaque and unstimulated saliva showed a linear reduction with increasing frequency of xylitol chewing gum use at the constant daily dose. Although the difference observed for the group that chewed xylitol 2 times/day was consistent with the linear model, the difference was not significant. CONCLUSION: There was a linear reduction in mutans streptococci levels in plaque and saliva with increasing frequency of xylitol gum use at a constant daily dose. Reduction at a consumption frequency of 2 times per day was small and consistent with the linear-response line but was not statistically significant

    Plantas e constituintes químicos empregados em Odontologia: revisão de estudos etnofarmacológicos e de avaliação da atividade antimicrobiana in vitro em patógenos orais

    Full text link

    Inhibitory Effect of Cratoxylum formosum Gum on Candida glabrata and Its α-mangostin Content

    No full text
    Candida glabrata is the most common fungal species isolated in patients with severe mucosal inflammation. The high resistance to traditional antifungal therapies makes this species a growing concern in clinical settings. Cratoxylum formosum is a plant widely distributed in mountainous area of Asian countries. This study aims to examine antifungal activity of C.formosum gum against C.glabrata and its α-mangostin content. Inhibition of fungal growth was primarily tested by agar diffusion. Broth dilution method was then used to determine the minimum inhibitory concentration (MIC). The α-mangostin content was determined by high performance liquid chromatography (HPLC). Inhibitory effect of the gum was seen against C.glabrata (clinical isolate and ATCC22019) with zones of inhibition ranging from 14.3 to 10.2 mm. MIC value against C. glabrata ATCC22019 and the clinical isolate was 1.25 mg/mL. By HPLC, the α-mangostin content of C.formosum gum was determined as 4.08% (w/w). In conclusion, the anticandidal activity of C.formosum gum suggests that this plant may be a useful source for the development of a novel antifungal agent against candidal infection. Further in vitro/in vivo studies should be conducted to understand the mechanisms of action and to establish the safe profile of this gum for clinical usage.

    Inhibitory Effect of

    No full text
    Candida glabrata is the most common fungal species isolated in patients with severe mucosal inflammation. The high resistance to traditional antifungal therapies makes this species a growing concern in clinical settings. Cratoxylum formosum is a plant widely distributed in mountainous area of Asian countries. This study aims to examine antifungal activity of C.formosum gum against C.glabrata and its α-mangostin content. Inhibition of fungal growth was primarily tested by agar diffusion. Broth dilution method was then used to determine the minimum inhibitory concentration (MIC). The α-mangostin content was determined by high performance liquid chromatography (HPLC). Inhibitory effect of the gum was seen against C.glabrata (clinical isolate and ATCC22019) with zones of inhibition ranging from 14.3 to 10.2 mm. MIC value against C. glabrata ATCC22019 and the clinical isolate was 1.25 mg/mL. By HPLC, the α-mangostin content of C.formosum gum was determined as 4.08% (w/w). In conclusion, the anticandidal activity of C.formosum gum suggests that this plant may be a useful source for the development of a novel antifungal agent against candidal infection. Further in vitro/in vivo studies should be conducted to understand the mechanisms of action and to establish the safe profile of this gum for clinical usage.

    Antifungal Activity of Type III Dental Gypsum Incorporated with 3-iodo-2- Propynyl-Butylcarbamate

    No full text
    The fungal growth on dental model can damage and affect the physical appearance of the gypsum. Fungi can be transferred among patients and dental personnel. Moreover, they relate to numerous illnesses. Thus, the development of antifungal dental gypsum is required to avoid the fungal growth on dental models. This study evaluated antifungal properties of 3-iodo-2-propynyl-butylcarbamate (IPBC) incorporated into type III dental gypsum. Three types of dental gypsum (Sirius, Ultima, France, 0.005% w/w IPBC and non-IPBC Siam Moulding Plaster, Thailand) were tested according to modified ASTM G 21-96 method with Penicillium notatum MI-311, Aspergillus flavus MI-321, and Aspergillus spp. isolated from orthodontic models. 50 ÎŒL of spore suspension of each fungus (104CFU/mL) was dropped on the prepared gypsum samples and incubated at room temperature, ≄85% relative humidity for 28 days. Fungal growth was visually scored. No fungal growth was observed on IPBC gypsum while 2 strains of Aspergillus spp. could be found on sirius gypsum. Type III dental gypsum incorporated with IPBC shows significant antifungal activity (p < .001) compared with non-IPBC and Sirius groups. This developed gypsum with IPBC can be used to fabricate dental models to prevent any damages from fungal growth
    • 

    corecore