146 research outputs found

    Design modifications in electrospinning setup for advanced applications

    Get PDF
    10.1155/2011/317673Journal of Nanomaterials2011

    Optimization of 3D ZnO brush-like nanorods for dye-sensitized solar cells

    Get PDF
    © 2018 The Royal Society of Chemistry This is an Open Access article, distributed under the terms of the Creative Commons Attribution Unported 3.0 license (CC BY 3.0), https://creativecommons.org/licenses/by/3.0/ which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly citedIn a dye-sensitized solar cell (DSSC) the amount of adsorbed dye on the photoanode surface is a key factor that must be maximized in order to obtain enhanced DSSC performance. In this study 3D ZnO nanostructures, named brush-like, are demonstrated as alternative photoanodes. In these structures, long ZnO nanorods are covered with a metal-organic precursor, known as a layered-hydroxide zinc salt (LHZS), which is subsequently converted to crystalline ZnO using two-step annealing. The LHZS is able to easily grow on any surface, such as the ZnO nanorod surface, without needing the assistance of a seed-layer. Brush-like structures synthesized using different citrate concentrations in the growth solutions and different annealing conditions are characterized and tested as DSSC photoanodes. The best-performing structure reported in this study was obtained using the highest citrate concentration (1.808 mM) and the lowest temperature annealing condition in an oxidative environment. Conversion efficiency as high as 1.95% was obtained when these brush-like structures were employed as DSSC photoanodes. These results are extremely promising for the implementation of these innovative structures in enhanced DSSCs, as well as in other applications that require the maximization of surface area exposed by ZnO or similar semiconductors, such as gas- or bio-sensing or photocatalysis.Peer reviewedFinal Published versio

    Photosynthetic Energy Conversion: Hydrogen Photoproduction by Natural and Biomimetic Means

    Get PDF
    The main function of the photosynthetic process is to capture solar energy and to store it in the form of chemical fuels. Many fuel forms such as coal, oil and gas have been intensively used and are becoming limited. Hydrogen could become an important clean fuel for the future. Among different technologies for hydrogen production, oxygenic natural and artificial photosynthesis using direct photochemistry in synthetic complexes have a great potential to produce hydrogen as both use clean and cheap sources - water and solar energy. Photosynthetic organisms capture sunlight very efficiently and convert it into organic molecules. Artificial photosynthesis is one way to produce hydrogen from water using sunlight by employing biomimetic complexes. However, splitting of water into protons and oxygen is energetically demanding and chemically difficult. In oxygenic photosynthetic microorganisms water is splitted into electrons and protons during primary photosynthetic processes. The electrons and protons are redirected through the photosynthetic electron transport chain to the hydrogen-producing enzymes-hydrogenase or nitrogenase. By these enzymes, e- and H+ recombine and form gaseous hydrogen. Biohydrogen activity of hydrogenase can be very high but it is extremely sensitive to photosynthetic O2. At the moment, the efficiency of biohydrogen production is low. However, theoretical expectations suggest that the rates of photon conversion efficiency for H2 bioproduction can be high enough (> 10%). Our review examines the main pathways of H2 photoproduction using photosynthetic organisms and biomimetic photosynthetic systems and focuses on developing new technologies based on the effective principles of photosynthesis

    Dye molecules in electrolytes: new approach for suppression of dye-desorption in dye-sensitized solar cells

    Get PDF
    The widespread commercialization of dye-sensitized solar cells remains limited because of the poor long-term stability. We report on the influence of dye-molecules added in liquid electrolyte on long-term stability of dye-sensitized solar cells. Dye-desorption from the TiO2 surface during long-term cycling is one of the decisive factors that degrade photocurrent densities of devices which in turn determine the efficiencies of the devices. For the first time, desorption of dye from the TiO2 surface could be suppressed by controlling thermodynamic equilibrium; by addition of dye molecules in the electrolyte. The dye molecules in the electrolyte can suppress the driving forces for the adsorbed dye molecules to be desorbed from TiO2 nanoparticles. As a result, highly enhanced device stabilities were achieved due to the reduction of dye-desorption although there was a little decrease in the initial efficiencies.open4

    Asia energy mixes from socio-economic and environmental perspectives

    No full text
    10.1016/j.enpol.2009.05.061Energy Policy37114240-4250ENPY

    Asia energy mixes from socio-economic and environmental perspectives

    No full text
    Sustainable clean energy is the top social, economic, and environmental agenda of political leaders, policy makers, enlightened business executives, and civil society in Asia. Strong economic growth in Asia has caused a great demand for energy which has resulted in an enormous increase in CO2 emissions. The association of Southeast Asian nations (ASEAN), India, China, South Korea and Japan are the most important regions in Asia as their economies have been growing steadily. These countries though heavily dependent on fossil fuels have stepped up their measures towards low-carbon society amid domestic affordability challenges and changing global mindset. This report highlights the current energy scenario in these countries and their effort towards an affordable and sustainable clean energy future. The energy policy to enhance energy security and improve environmental sustainability is also explicated in this article.Climate change Carbon emission Renewable energy

    Investigation of the influence of hydroxy groups on the radical scavenging ability of polyphenols

    No full text
    10.1021/jp057315rJournal of Physical Chemistry A110144918-4923JPCA
    corecore