9 research outputs found

    Utilization of Corncob Biochar in Cultivation Media for Cordycepin Production and Biomass of <i>Cordyceps militaris</i>

    No full text
    Cordyceps militaris is an entomopathogenic fungus. It is well-known as a rich source of bioactive compounds called cordycepins and adenosines, which are useful in medicinal applications. The effects of medium components on cordycepin and adenosine production by C. militaris, obtained by adding different conditions of corncob biochar in solid media, were investigated in this study. The medium components, which mixed 0.1, 0.3, 0.5, 1, 5 and 10 g of biochar with rice berries, were optimized to improve the yield of biomasses, cordycepins, and adenosines. The results showed that 10 g of biochar mixed with a rice berry medium was the optimal medium condition for the highest dry fruiting body weight (DFW) and cordycepin yield (CY) at 3.6 kg/bottle and 20.5 mg/g, respectively, but the adenosine yield (AY) was similar to that in other conditions. Moreover, the SEM showed that the mycelia of C. militaris attached to the biochar surface (pores) and used it as the resident. EDS analysis from the basal medium indicated that C and O were present in the mycelia of C. militaris with the average values of 25.6% and 71.4%, respectively. This study provides an effective cultivation method by using agricultural residue, and biochar corncob as a high concentration of carbon for increasing the biomass, cordycepin, and adenosine yield of C. militaris. The information obtained in this study is fundamental and useful to the development of a C. militaris cultivation process for the efficient production of cordycepin on a large scale. The findings suggest that the system design of the cultivation medium is crucial for growth and cordycepin production

    Alkaloids and Styryl lactones from Goniothalamus ridleyi King and Their &alpha;-Glucosidase Inhibitory Activity

    No full text
    Gonioridleylactam (1), a new compound, is a unique dimeric aristolactam isolated from the EtOAc extract of the twigs of Goniothalamus ridleyi King. The structure of gonioridleylactam (1) consists of two different aristolactams linked together with two methylenedioxy bridges at C&ndash;3/C&ndash;3&prime; and C&ndash;4/C&ndash;4&prime;, generating a ten-membered ring of [1,3,6,8]tetraoxecine. A new natural product, gonioridleyindole (3-hydroxymethyl-1-methyl-1H-benz[f]indole-4,9-dione, 2), together with eight known compounds (3&ndash;10) were also isolated from this plant. Their structures were extensively characterized by spectroscopic methods and comparisons were made with the literature. Compounds 1&ndash;4, 7, and 9 were evaluated for their &alpha;-glucosidase inhibitory activity. Of these, 3,5-demethoxypiperolide (7) displayed the highest &alpha;-glucosidase inhibitory activity, with an IC50 value of 1.25 &micro;M

    Alkaloids and Styryl lactones from <i>Goniothalamus ridleyi</i> King and Their <i>α</i>-Glucosidase Inhibitory Activity

    No full text
    Gonioridleylactam (1), a new compound, is a unique dimeric aristolactam isolated from the EtOAc extract of the twigs of Goniothalamus ridleyi King. The structure of gonioridleylactam (1) consists of two different aristolactams linked together with two methylenedioxy bridges at C–3/C–3′ and C–4/C–4′, generating a ten-membered ring of [1,3,6,8]tetraoxecine. A new natural product, gonioridleyindole (3-hydroxymethyl-1-methyl-1H-benz[f]indole-4,9-dione, 2), together with eight known compounds (3–10) were also isolated from this plant. Their structures were extensively characterized by spectroscopic methods and comparisons were made with the literature. Compounds 1–4, 7, and 9 were evaluated for their α-glucosidase inhibitory activity. Of these, 3,5-demethoxypiperolide (7) displayed the highest α-glucosidase inhibitory activity, with an IC50 value of 1.25 µM

    Kaempferia parviflora Rhizome Extract as Potential Anti-Acne Ingredient

    No full text
    Kaempferia parviflora (Black ginger) is used widely in medical fields as an anti-microorganism and anti-inflammation. In this study, the aim was to evaluate the in vitro and in vivo anti-acne efficacy of black ginger extract. The results indicate that the methanol and ethanol extracts showed the highest total phenolic contents, without a significant difference, whereas the n-hexane extract showed the highest total flavonoid content. Nine flavones were detected using UPLC&minus;QTOF&minus;MS, and the ethyl acetate extract showed the highest amount of 5,7-dimethoxyflavone (DMF) according to HPLC. Antibacterial activity against Staphylococcus aureus, S. epidermidis, and Cutibacterium acnes was observed. All the extracts showed antimicrobial activity against C. acnes, revealing MICs in the range of 0.015 to 0.030 mg/mL, whereas the ethyl acetate extract inhibited the growth of S. epidermidis with a MIC of 3.84 mg/mL. In addition, the ethyl acetate extract showed the highest activity regarding nitric oxide inhibition (IC50 = 12.59 &plusmn; 0.35 &micro;g/mL). The ethyl acetate extract was shown to be safe regarding cell viability at 0.1 mg/mL. The anti-acne efficacy was evaluated on volunteers. The volunteers were treated in two groups: one administered a 0.02% ethyl acetate extract gel-cream (n = 9) and one administered a placebo (n = 9) for 6 weeks. The group treated with the gel-cream containing the extract showed 36.52 and 52.20% decreases in acne severity index (ASI) after 4 and 6 weeks, respectively, and 18.19 and 18.54% decreases in erythema, respectively. The results suggest that K. parviflora could be a potent active ingredient in anti-inflammatory and anti-acne products

    Cytotoxicity and nitric oxide production inhibitory activities of compounds isolated from the plant pathogenic fungus curvularia sp

    No full text
    Chemical investigation of the mycelia of the pathogenic fungus Curvularia sp. which was isolated from a leaf of Dactyloctenium aegyptium (crowfoot grass), resulted in the isolation of a new compound, curvulariahawadride (5), along with five known compounds (1–4, and 6). Their struc-tures were determined on the basis of spectroscopic data, including 1D and 2D NMR and HRESIMS. The absolute configuration of 5 was established from experimental and calculated electronic circu-lar dichroism (ECD). Compounds 1, 3, and 5 showed nitric oxide (NO) production inhibitory activ-ity with IC50 values of 53.7, 32.8, and 12.8 μM, respectively. Compounds 2 and 4 showed significant cytotoxicity against lung cancer A549, colorectal cancer SW480, and leukemic K562 cells with an IC50 ranging value of 11.73 to 17.59 μM
    corecore