7 research outputs found

    Sterol Carrier Protein Inhibition-Based Control of Mosquito Vectors: Current Knowledge and Future Perspectives

    No full text
    Cholesterol is one of the most vital compounds for animals as it is involved in various biological processes and acts as the structural material in the body. However, insects do not have some of the essential enzymes in the cholesterol biosynthesis pathway and this makes them dependent on dietary cholesterol. Thus, the blocking of cholesterol uptake may have detrimental effects on the survival of the insect. Utilizing this character, certain phytochemicals can be used to inhibit mosquito sterol carrier protein-2 (AeSCP-2) activity via competitive binding and proven to have effective insecticidal activities against disease-transmitting mosquitoes and other insect vectors. A range of synthetic compounds, phytochemicals, and synthetic analogs of phytochemicals are found to have AeSCP-2 inhibitory activity. Phytochemicals such as alpha-mangostin can be considered as the most promising group of compounds when considering the minimum environmental impact and availability at a low cost. Once the few limitations such as very low persistence in the environment are addressed successfully, these chemicals may be used as an effective tool for controlling mosquitoes and other disease-transmitting vector populations

    Establishment of a Colony of Phlebotomus argentipes under Laboratory Conditions and Morphometric Variation between Wild-Caught and Laboratory-Reared Populations

    No full text
    The field-based studies on sand flies are not adequate to uncover information required for the control of the leishmaniasis through reduction of vector populations. Therefore, establishment and maintenance of laboratory colonies of sand flies is an essential step in leishmaniasis research. In the current study, a colony of P. argentipes was established from wild-caught sand flies following standard procedures from the published literature. Morphological measurements of laboratory-reared and wild-caught individual sand flies were compared to assess the difference between two groups. The colony was successfully established under confined laboratory conditions. The comparison of morphometric parameters revealed that the laboratory-reared sand flies are significantly larger than those caught from wild, suggesting a possibility of increased fitness of sand flies under favorable environmental conditions which may cause higher prevalence in the disease. The current study reports the first successful attempt in colonizing sand flies under laboratory conditions. However, the colony data suggest that the conditions extracted from the published literature need to be optimized to suit local settings in order to achieve maximum population sizes within the available amount of resources

    Recent developments and future directions in the paratransgenesis based control of Leishmania transmission

    No full text
    Vector-borne diseases are one of the main concerns regarding global health. Among these, leishmaniasis stands as one of the most serious issues. This disease is transmitted via the bite of female phlebotomine sand flies. Due to the drawbacks such as the development of resistance associated with conventional vector control methods, paratransgenesis has become more popular in the recent past. A range of bacteria inhabit the gut of different species of sand flies. Bacillus subtilis, B. megaterium, and Enterobacter cloacae dissolvens are some of the common bacteria with ideal characteristics for this technique. Among the large number of natural anti-microbial peptides (AMPs) recovered from animals, DS hypo-01, Phylloseptin-1 and melittin are found to be the most effective. Hybrids of Cecropin A and melittin such as CA(1–8)M(1–18), D-CA(1–8)M(1–18) and N-Ac-CA(1–8)M(1–18) are also suitable candidates. Use of peptides initially released in an inactive form to activate upon exposure to a specific molecule is a potential solution for the lower specificity of AMPs. Single chain antibodies on the other hand, have high specificity, but effectiveness is lower than AMPs. The genetic transformation of the selected bacteria and the generation of paratransgenic sand flies through transtadial transmission are feasible under laboratory conditions. Safe delivery techniques such as microencapsulation are being tested to increase the specificity reducing environmental issues. Nevertheless, extensive studies with more practical approaches are required before applying this technique in the field

    Potential Challenges of Controlling Leishmaniasis in Sri Lanka at a Disease Outbreak

    No full text
    The present works reviewed the existing information on leishmaniasis in Sri Lanka and in other countries, focusing on challenges of controlling leishmaniasis in the country, in an outbreak. Evidence from recent studies suggests that there is a possibility of a leishmaniasis outbreak in Sri Lanka in the near future. Difficulty of early diagnosis due to lack of awareness and unavailability or inadequacy of sensitive tests are two of the main challenges for effective case management. Furthermore, the absence of a proper drug for treatment and lack of knowledge about vector biology, distribution, taxonomy and bionomics, and reservoir hosts make the problem serious. The evident potential for visceralization in the cutaneous variant of L. donovani in Sri Lanka may also complicate the issue. Lack of knowledge among local communities also reduces the effectiveness of vector and reservoir host control programs. Immediate actions need to be taken in order to increase scientific knowledge about the disease and a higher effectiveness of the patient management and control programs must be achieved through increased awareness about the disease among general public and active participation of local community in control activities

    Effects of Habitat Change on the Web Characteristics and Fitness of the Giant Wood Spider (Nephila pilipes) in Sri Lanka

    No full text
    We compare web properties and fitness of the Giant wood spider Nephila pilpes within and outside its natural rainforest habitat in Sri Lanka. The nonforest habitats comprised rural home gardens and plantations. We hypothesize that marked differences would be evident between the two habitats in (i) web properties and (ii) fitness of the female spiders. Web architectural and silk thread properties were measured in 25 webs of adult female spiders in each of the two habitats, while female abdomen size was used as the proxy for fitness. Findings support both hypotheses. The nonforest webs were more closely knit (smaller mesh spaces) and the hub was placed at higher position on the web than that in the forest webs both altering prey capture efficiency. Also, females in nonforest habitats were significantly smaller than those in the forest, indicating lowered fitness. The disparities in web characteristics and fitness are impressive given that the forest and nonforest habitats are located in close proximity, suggesting that rainforest orbweaver spiders such as Nephila pilpes may suffer population declines if the extents of natural forest continue to shrink

    Detection of Leishmania donovani DNA within Field-Caught Phlebotomine Sand Flies (Diptera: Psychodidae) in Three Cutaneous Leishmaniasis Endemic Foci of Kurunegala District, Sri Lanka

    No full text
    Leishmaniasis is a parasitic infection transmitted through the bite of female phlebotomine sand flies. Microscopy is the gold standard to detect parasites within the sand flies and for vector incrimination. However, molecular-based detection has become more popular nowadays in the identification of Leishmania parasites since it provides detection and species identification simultaneously with no need of laborious procedures. The entomological surveys were conducted monthly from May to October 2017 using standard entomological techniques. Field-caught sand flies were identified to the species level followed by DNA extraction. The polymerase chain reaction (PCR) was performed using species-specific primers to detect Leishmania donovani parasites. A total of 1,662 sand flies were encountered from the entomological surveys, and the majority of them were Phlebotomus argentipes (n = 1517; 91.27%), while others were Sergentomyia punjabiensis (n = 140; 8.72%). Leishmania donovani parasite DNA was detected only from P. argentipes (2.3%; n = 2). The detection of Leishmania DNA in P. argentipes suggests the possible role of this species as a vector for leishmaniasis in Sri Lanka
    corecore