11 research outputs found
Kinetics of Microvesicle Particle Release in Keratinocytes
Microvesicle particles (MVPs) are subcellular particles that could be involved in inter-cellular communication because they carry various bioactive substances including cytokines. Previous studies from our lab has shown that that the lipid mediator Platelet-activating Factor (1-alkyl-2-acetyl-glycerophosphocholine; PAF) and ultraviolet B radiation (UVB) enhances the release of MVP in various cell types like primary keratinocytes, epithelial cell lines, and murine skin. We hypothesized that there may be synergistic increases in MVP release after combination of treatment of keratinocytes with UVB and PAF agonist (CPAF)/phorbol ester (PMA). The combination treatment significantly increases MVP and cytokine release at 4 to 8 hours time points. Imipramine, an acid sphingomyelinase (aSMase) inhibitor blocks MVP and cytokine release which indicates that MVP could be involved in cytokine release. The increased level of TNF-alpha in the supernatant was not present in the MVP but surprisingly there was increased level of anti-inflammatory cytokine, Interleukin 1- receptor antagonist (IL-1ra) inside MVP after UVB treatment than in combination treatment, which could portray potential imbalances between pro-inflammatory cytokines and down regulating responses in exaggerated condition. These studies suggest that MVP could play a role in how keratinocytes respond to UVB
Kinetics of Microvesicle Particle Release in Keratinocytes
Microvesicle particles (MVPs) are subcellular particles that could be involved in inter-cellular communication because they carry various bioactive substances including cytokines. Previous studies from our lab has shown that that the lipid mediator Platelet-activating Factor (1-alkyl-2-acetyl-glycerophosphocholine; PAF) and ultraviolet B radiation (UVB) enhances the release of MVP in various cell types like primary keratinocytes, epithelial cell lines, and murine skin. We hypothesized that there may be synergistic increases in MVP release after combination of treatment of keratinocytes with UVB and PAF agonist (CPAF)/phorbol ester (PMA). The combination treatment significantly increases MVP and cytokine release at 4 to 8 hours time points. Imipramine, an acid sphingomyelinase (aSMase) inhibitor blocks MVP and cytokine release which indicates that MVP could be involved in cytokine release. The increased level of TNF-alpha in the supernatant was not present in the MVP but surprisingly there was increased level of anti-inflammatory cytokine, Interleukin 1- receptor antagonist (IL-1ra) inside MVP after UVB treatment than in combination treatment, which could portray potential imbalances between pro-inflammatory cytokines and down regulating responses in exaggerated condition. These studies suggest that MVP could play a role in how keratinocytes respond to UVB
Low UVB Fluences Augment Microvesicle Particle Generation in Keratinocytes
Microvesicle particles (MVP) are bioactive subcellular particles which have been recently implicated in the keratinocyte response to many environmental stressors including ultraviolet B radiation (UVB). Previous studies have demonstrated that UVB generates high levels of MVP in a process involving the platelet-activating factor receptor (PAFR) and the enzyme acid sphingomyelinase (aSMase). Yet the fluences of UVB needed to generate MVP are usually above those commonly encountered. Using models including human epithelial cell lines in vitro, human skin explants ex vivo and murine studies in vivo, the present studies indicate that pretreatment of epithelial cells/skin with PAFR agonist/phorbol ester can synergize with low fluences of UVB to generate high levels of MVP. These studies indicate the possibility that MVP could play a role in combinatorial pathologic processes involving UVB
Low UVB Fluences Augment Microvesicle Particle Generation in Keratinocytes
Microvesicle particles (MVP) are bioactive subcellular particles which have been recently implicated in the keratinocyte response to many environmental stressors including ultraviolet B radiation (UVB). Previous studies have demonstrated that UVB generates high levels of MVP in a process involving the platelet-activating factor receptor (PAFR) and the enzyme acid sphingomyelinase (aSMase). Yet the fluences of UVB needed to generate MVP are usually above those commonly encountered. Using models including human epithelial cell lines in vitro, human skin explants ex vivo and murine studies in vivo, the present studies indicate that pretreatment of epithelial cells/skin with PAFR agonist/phorbol ester can synergize with low fluences of UVB to generate high levels of MVP. These studies indicate the possibility that MVP could play a role in combinatorial pathologic processes involving UVB
Low UVB Fluences Augment Microvesicle Particle Generation in Keratinocytes
Microvesicle particles (MVP) are bioactive subcellular particles which have been recently implicated in the keratinocyte response to many environmental stressors including ultraviolet B radiation (UVB). Previous studies have demonstrated that UVB generates high levels of MVP in a process involving the platelet-activating factor receptor (PAFR) and the enzyme acid sphingomyelinase (aSMase). Yet the fluences of UVB needed to generate MVP are usually above those commonly encountered. Using models including human epithelial cell lines in vitro, human skin explants ex vivo and murine studies in vivo, the present studies indicate that pretreatment of epithelial cells/skin with PAFR agonist/phorbol ester can synergize with low fluences of UVB to generate high levels of MVP. These studies indicate the possibility that MVP could play a role in combinatorial pathologic processes involving UVB
Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor
Thermal burn injuries are an important environmental stressor that can result in considerable morbidity and mortality. The exact mechanism by which an environmental stimulus to skin results in local and systemic effects is an area of active research. One potential mechanism to allow skin keratinocytes to disperse bioactive substances is via microvesicle particles, which are subcellular bodies released directly from cellular membranes. Our previous studies have indicated that thermal burn injury of the skin keratinocyte in vitro results in the production of the lipid mediator platelet-activating factor (PAF). The present studies demonstrate that thermal burn injury to keratinocytes in vitro and human skin explants ex vivo, and mice in vivo generate microvesicle particles. Use of pharmacologic and genetic tools indicates that the optimal release of microvesicles is dependent upon the PAF receptor. Of note, burn injury-stimulated microvesicle particles do not carry appreciable protein cytokines yet contain high levels of PAF. These studies describe a novel mechanism involving microvesicle particles by which a metabolically labile bioactive lipid can travel from cells in response to environmental stimuli
Thermal Burn Injury Generates Bioactive Microvesicles: Evidence for a Novel Transport Mechanism for the Lipid Mediator Platelet-Activating Factor (PAF) That Involves Subcellular Particles and the PAF Receptor
Thermal burn injuries are an important environmental stressor that can result in considerable morbidity and mortality. The exact mechanism by which an environmental stimulus to skin results in local and systemic effects is an area of active research. One potential mechanism to allow skin keratinocytes to disperse bioactive substances is via microvesicle particles, which are subcellular bodies released directly from cellular membranes. Our previous studies have indicated that thermal burn injury of the skin keratinocyte in vitro results in the production of the lipid mediator platelet-activating factor (PAF). The present studies demonstrate that thermal burn injury to keratinocytes in vitro and human skin explants ex vivo, and mice in vivo generate microvesicle particles. Use of pharmacologic and genetic tools indicates that the optimal release of microvesicles is dependent upon the PAF receptor. Of note, burn injury-stimulated microvesicle particles do not carry appreciable protein cytokines yet contain high levels of PAF. These studies describe a novel mechanism involving microvesicle particles by which a metabolically labile bioactive lipid can travel from cells in response to environmental stimuli
Keratinocyte-Derived Microvesicle Particles Mediate Ultraviolet B Radiation-Induced Systemic Immunosuppression
A complete carcinogen, ultraviolet B (UVB) radiation (290–320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression
Keratinocyte-Derived Microvesicle Particles Mediate Ultraviolet B Radiation-Induced Systemic Immunosuppression
A complete carcinogen, ultraviolet B (UVB) radiation (290–320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression
Keratinocyte-Derived Microvesicle Particles Mediate Ultraviolet B Radiation-Induced Systemic Immunosuppression
A complete carcinogen, ultraviolet B (UVB) radiation (290–320 nm), is the major cause of skin cancer. UVB-induced systemic immunosuppression that contributes to photocarcinogenesis is due to the glycerophosphocholine-derived lipid mediator platelet-activating factor (PAF). A major question in photobiology is how UVB radiation, which only absorbs appreciably in the epidermal layers of skin, can generate systemic effects. UVB exposure and PAF receptor (PAFR) activation in keratinocytes induce the release of large numbers of microvesicle particles (MVPs; extracellular vesicles ranging from 100 to 1000 nm in size). MVPs released from skin keratinocytes in vitro in response to UVB (UVB-MVPs) are dependent on the keratinocyte PAFR. Here, we used both pharmacologic and genetic approaches in cells and mice to show that both the PAFR and enzyme acid sphingomyelinase (aSMase) were necessary for UVB-MVP generation. Our discovery that the calcium-sensing receptor is a keratinocyte-selective MVP marker allowed us to determine that UVB-MVPs leaving the keratinocyte can be found systemically in mice and humans following UVB exposure. Moreover, we found that UVB-MVPs contained bioactive contents including PAFR agonists that allowed them to serve as effectors for UVB downstream effects, in particular UVB-mediated systemic immunosuppression