10 research outputs found

    High prevalence of PI resistance in patients failing second-line ART in Vietnam.

    No full text
    Background There are limited data from resource-limited settings on antiretroviral resistance mutations that develop in patients failing second-line PI ART. Methods We performed a cross-sectional virological assessment of adults on second-line ART for ≄6 months between November2006 and December 2011, followed by a prospective follow-upover 2 years of patients with virological failure (VF) at the Hospital for Tropical Diseases, Vietnam. VF was defined as HIV RNA concentrations≄1000 copies/mL. Resistance mutations were identified by population sequencing of thepolgene and interpreted using the 2014 IAS-USA mutation list and the Stanford algorithm. Logistic regression modelling was performed to identify predictors of VF. Results Two hundred and thirty-one patients were enrolled in the study. The median age was 32 years; 81.0% were male, 95.7% were on a lopinavir/ritonavir-containing regimen and 22 (9.5%) patients had VF. Of the patients with VF, 14 (64%) carried at least one major protease mutation [median: 2 (IQR: 1–3)]; 13 (59%) had multiple protease mutations conferring intermediate- to high-level resistance to lopinavir/ritonavir. Mutations conferring cross-resistance to etravirine, rilpivirine, tipranavir and darunavir were identified in 55%, 55%, 45% and 27% of patients, respectively. Higher viral load, adherence,95% and previous indinavir use were independent predictors of VF. The 2 year outcomes of the patientsmaintained on lopinavir/ritonavir included: death, 7 (35%); worsening virological/immunological control, 6 (30%); and virological re-suppression, 5 (25%). Two patients were switched to raltegravir and darunavir/ritonavir with good HIV control. Conclusions High-prevalence PI resistance was associated with previous indinavir exposure. Darunavir plus an integrase inhibitor and lamivudine might be a promising third-line regimen in Vietnam.</p

    RHO GTPase in plants: Conservation and invention of regulators and effectors

    No full text
    Plants possess a single subfamily of Rho GTPases, ROP, which does usual things as do Rho-family GTPases in animal and fungal systems, namely participating in the spatial control of cellular processes by signaling to the cytoskeleton and vesicular trafficking. As one would expect, ROPs are modulated by conserved regulators such as DHR2-type GEFs, RhoGAPs and Rho GDIs. What is surprising is that plants have invented new regulators such as PRONE-type GEFs (known as RopGEFs) and effectors such as RICs and ICRs/RIPs in the regulation of the cytoskeleton and vesicular trafficking. This review will discuss recent work on characterizing ROP regulators and effectors as well as addressing why and how a mixture of conserved and novel Rho signaling mechanisms is utilized to modulate fundamental cellular processes such as cytoskeletal dynamics/reorganization and vesicular trafficking

    Medical Oncology

    No full text
    corecore