4 research outputs found

    āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ—āļēāļ‡āđ€āļĻāļĢāļĐāļāļĻāļēāļŠāļ•āļĢāđŒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§āļ‚āļ™āļēāļ”āđ€āļĨāđ‡āļāļĢāļ°āļ”āļąāļšāļŠāļļāļĄāļŠāļ™Economic Analysis of Community Level Small Rice Mill

    No full text
    āļ§āļąāļ•āļ–āļļāļ›āļĢāļ°āļŠāļ‡āļ„āđŒāļ‚āļ­āļ‡āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ„āļ·āļ­āļāļēāļĢāļ§āļīāđ€āļ„āļĢāļēāļ°āļŦāđŒāļ„āđˆāļēāļ—āļēāļ‡āđ€āļĻāļĢāļĐāļāļĻāļēāļŠāļ•āļĢāđŒāļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§āļ‚āļ™āļēāļ”āđ€āļĨāđ‡āļāļ—āļĩāđˆāļ„āļ“āļ°āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāđ„āļ”āđ‰āļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āđ‚āļ”āļĒāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§āļ—āļĩāđˆāļžāļąāļ’āļ™āļēāļ‚āļķāđ‰āļ™āļĄāļĩāļŦāļĨāļąāļāļāļēāļĢāļ—āļģāļ‡āļēāļ™ āļ„āļ·āļ­ āļāļēāļĢāļ—āļģāļ„āļ§āļēāļĄāļŠāļ°āļ­āļēāļ” āļāļēāļĢāļŠāļĩ āļāļēāļĢāļ‚āļąāļ”āļ‚āļēāļ§ āđāļĨāļ°āļāļēāļĢāļ„āļąāļ”āļ‚āļ™āļēāļ” āļ•āļĨāļ­āļ”āļˆāļ™āļŠāļēāļĄāļēāļĢāļ–āļŠāļĩāļ‚āđ‰āļēāļ§āđ€āļ›āļĨāļ·āļ­āļāđƒāļŦāđ‰āđ€āļ›āđ‡āļ™āļ‚āđ‰āļēāļ§āļāļĨāđ‰āļ­āļ‡ āļ‚āđ‰āļēāļ§āļ‹āđ‰āļ­āļĄāļĄāļ·āļ­ āđāļĨāļ°āļ‚āđ‰āļēāļ§āļ‚āļēāļ§āđ„āļ”āđ‰āļ•āļēāļĄāļ„āļ§āļēāļĄāļ•āđ‰āļ­āļ‡āļāļēāļĢāļ‚āļ­āļ‡āļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„ āļˆāļēāļāļāļēāļĢāļ—āļ”āļŠāļ­āļšāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§ āļŠāļĩāļ‚āđ‰āļēāļ§āđ€āļ›āļĨāļ·āļ­āļāļžāļąāļ™āļ˜āļļāđŒāļ‚āļēāļ§āļ”āļ­āļāļĄāļ°āļĨāļī 105 āļ—āļĩāđˆāļĄāļĩāļ„āļ§āļēāļĄāļŠāļ·āđ‰āļ™āđ„āļĄāđˆāđ€āļāļīāļ™ 14% āļžāļšāļ§āđˆāļēāđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§āļĄāļĩāļ„āļ§āļēāļĄāļŠāļēāļĄāļēāļĢāļ–āđƒāļ™āļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āđ€āļ›āļĨāļ·āļ­āļāđ€āļ—āđˆāļēāļāļąāļš 100 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ•āđˆāļ­āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āđ€āļ—āđˆāļēāļāļąāļš 66% āđāļĨāļ°āļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļœāļĨāļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āđ€āļ—āđˆāļēāļāļąāļš 42% āļŠāļģāļŦāļĢāļąāļšāļˆāļēāļāļāļēāļĢāļžāļīāļˆāļēāļĢāļ“āļēāļ„āđˆāļēāļ•āđ‰āļ™āļ—āļļāļ™āļ„āļ‡āļ—āļĩāđˆ āđāļĨāļ°āļ„āđˆāļēāļ•āđ‰āļ™āļ—āļļāļ™āđāļ›āļĢāļœāļąāļ™āļ‚āļ­āļ‡āļāļēāļĢāđƒāļŠāđ‰āļ‡āļēāļ™āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§ āđƒāļ™āļāļĢāļ“āļĩāļ—āļĩāđˆāļ‚āļēāļĒāļœāļĨāļœāļĨāļīāļ•āļˆāļēāļāļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āđ„āļ”āđ‰āļ—āļąāđ‰āļ‡āļŦāļĄāļ” āļœāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļˆāļļāļ”āļ„āļļāđ‰āļĄāļ—āļļāļ™āđƒāļ™āļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āļāļĨāđ‰āļ­āļ‡āđāļĨāļ°āļāļēāļĢāļŠāļĩāļ‚āđ‰āļēāļ§āļ‚āļēāļ§āđ€āļ—āđˆāļēāļāļąāļš 1,103.76 āđāļĨāļ° 6,259.08 āļāļīāđ‚āļĨāļāļĢāļąāļĄāļ‚āđ‰āļēāļ§āđ€āļ›āļĨāļ·āļ­āļāļ•āđˆāļ­āļ›āļĩ āļ•āļēāļĄāļĨāļģāļ”āļąāļš āđāļĨāļ°āļĢāļ°āļĒāļ°āđ€āļ§āļĨāļēāđƒāļ™āļāļēāļĢāļ„āļ·āļ™āļ—āļļāļ™āļ‚āļ­āļ‡āđ€āļ„āļĢāļ·āđˆāļ­āļ‡āļŠāļĩāļ‚āđ‰āļēāļ§ āđƒāļ™āļāļĢāļ“āļĩāļŠāļĩāļ‚āđ‰āļēāļ§āļāļĨāđ‰āļ­āļ‡āļˆāļģāļŦāļ™āđˆāļēāļĒ āđāļĨāļ°āļŠāļĩāļ‚āđ‰āļēāļ§āļ‚āļēāļ§āļˆāļģāļŦāļ™āđˆāļēāļĒāļĄāļĩāļ„āđˆāļēāđ€āļ—āđˆāļēāļāļąāļš 262.56 āđāļĨāļ° 1,537 āļŠāļąāđˆāļ§āđ‚āļĄāļ‡ āļ•āļēāļĄāļĨāļģāļ”āļąāļšThe objective of present project is focused on analyzing economic of the developed rice mill. The components of developed rice mill mainly consisted of cleaning system, husking system polishing system and sorting system. The machine is able to mill paddy to brown rice, semi-milled rice, and white rice depending on the needs of consumers freely. From result of testing the machine by milling Khao Dawk Mali 105 paddy which has its moisture content not more than 14%, it was found that a capacity of a developed machine is equal to 100 kg of paddy per hour, a rice milling performance of the machine is about 66%, and rice milling effectiveness of the machine is 42%. For economic analysis of rice mill developed, consideration of fixed cost and variable cost in using the machine was, in case of selling all products from rice milling process to customers completely, reported that Break-even Point of the machine in milling brown rice and white rice were 1,103.76 and 6,259.08 kilogram of paddy/year, respectively, and Payback Period of the machine in selling brown rice and white rice to buyers were equal to 262.56 and 1,537 hours, respectively

    The Optimum Design Parameters in Terms of Total Specific Energy Requirements for the Rotary Blade Power Tiller under Unsaturated Sandy Clay Loam Soil Condition

    No full text
    ABSTRACT A mathematical modeling approach was applied to predict optimum design parameters in terms of the total specific energy requirements of a "Pick", a "C", an "I", an "L" and a "J"-shaped rotary blades. The modified total specific energy requirement model mainly has been includeds, the forward speed of the machine, the rotational speed, the depth of soil cut, the width of soil cut, the rotor radius, the angle of periphery, the angle of rotation, the specific soil resistance, the dry soil bulk density and volume of soil tilled. At the same working conditions the total specific energy requirement was predicted to be 231. 61, 160.72, 196.87, 168.56 and 167.56 kJ / m 3 for the "Pick", the "C", the "I", the "L" and the "J"-shaped rotary blades, respectively. The highest specific energy requirement was exhibited by the "Pick"-shaped and the lowest by the "C"-shaped blade. The higher total specific energy requirement the lower volume of soil tilled and the most effective and optimum soil tillage operational cost is achieved. Compared to another study at the same soil condition the specific energy requirement per volume of soil tilled by the "Pick"-shaped blade was exhibited 1900 kJ / m 3 which was higher by 87.81 % than the "Pick"-shaped blade in the present study. Therefore, the model suggests rotary tiller development under local conditions
    corecore