69 research outputs found
A Study of Blast Pressure from Underwater Borehole Blasting
The paper presents an experimental study conducted under laboratory conditions on the measurement of the pressure waves transmitted into water that are radiated from following the detonation of an explosive charge buried in a block. In order to simulate full scale blasting operations at sea, small explosive charge of 1.8g PETN was buried in a concrete block and detonated under water. Information concerning the test set-up, instrumentation, type of explosives used, scaling factor and measurement of pressure is briefly described. The paper also presents analysis of the test results in the form of FFT’s and Transfer functions and details of its importance to practical blasting operations at sea using buried explosive charges
Prototype Piling in Soft Clay — A Case Study of Ground Vibrations: Field Measurement
Ground vibrations are generated either by natural phenomena or by human activities. Among the natural phenomena, earthquake is the principal source of ground vibrations of most interest. Ground vibrations generated by human activities are called manmade vibrations and these vary greatly in intensity depending on the particular source of vibration. The seismic waves associated with man-made vibrations propagate in the ground and inevitably interact with structures that are above-ground or underground. This interaction induces vibrations in the structure and, in extreme cases, affect its serviceability and integrity seriously. Still, there is no method to quantify the levels of piling vibration. Estimation of amplitudes and frequencies of vibration are based on experience and site testing. Therefore, in order to characterize the ground vibration due to piling, field measurement of ground vibration during prototype pile driving in soft clay was carried out. This paper presents the details of field measurement, instrumentation, collection of vibration data, acquisition and processing of data using PC-based data acquisition system made during the pile driving. The measurement of ground and already installed pile vibrations during prototype pile driving at a construction site in Chennai was carried out. The soil at this site is loose soft clay. The pile was of the type driven casing cast-in-situ pile of 500mm (OD) diameter. The depth of penetration of the pile was 13.25m. A 4 tonne hammer with a drop height of 1m drove the 25mm thick Mild Steel (MS) tube casing. During driving, ground acceleration was measured at a distance of 5D and 25D, where D is the diameter of pile, from the centre of pile. The vertical acceleration of an already installed pile situated at a distance of 37D from the driven pile were recorded. Piezoelectric acceleration transducers, power amplifiers, and tape recorder were used for the measurement. Acceleration signals were recorded using TEAC recorder. The recorded signals were processed using PC-based Data Acquisition System with DASYLAB software. The response time-histories and spectra of ground vibrations are presented and discussed
Field Investigation on Ground and Structural Vibrations During Prototype Pile Driving
As the land is very precious in urban areas and coastal regions, many structures are built in close proximity. When the soil is weak and heavy loads are to be carried, pile foundation is adopted for such structures. The impact caused by pile driving is a potential hazard to neighbourhood structures. Berthing structures are constructed using piles and the effect of pile driving on already installed adjacent piles is important. To predict the effect of pile driving on neighbourhood piles, measurement of ground and structural vibrations during prototype pile driving was carried out at a site in the city of Chennai, India. The soil at the site up to a depth of 19 m is mainly fine to medium sand. A driven cast in-situ pile of 600 mm diameter (D) was driven up to a depth of 15.8 m. The 25mm thick mild steel (M.S) tube casing is driven by 4.1t hammer with a drop height of 2.5m. During the pile driving, for every blow of hammer, the acceleration of the ground at various distances 5D, 8.33 D and 25 D from the pile are measured. Piezoelectric acceleration transducers, power amplifiers and taper recorder are used for measurement. The time history of vertical and horizontal ground accelerations as well as time history of vertical acceleration of an already installed pile at a distance of 6.25 m was analysed using PC based data acquisition systems. The time-histories and spectrum of ground and structural accelerations are presented
Plasma-sprayed thermal barrier coatings: numerical study on damage localization and evolution
Thermal barrier coatings (TBCs) are advanced material systems used to enhance performance and in-service life of components operated at high temperatures in gas turbines and other power generation devices. Because of complexity, numerical methods became important tools both for design of these coatings and for in-service life estimations and optimization. In this contribution, two main features that affect the TBCs’ performance, namely the roughness of the bond coat and the microstructure of the ceramic top coat, are discussed based on Finite Element Method (FEM) and Finite Element Microstructure MEshfree (FEMME) simulations that were used to calculate stresses and assess damage within the coating. Roughness data obtained from plasma-sprayed CoNiCrAlY + YSZ coated samples are supplemented to discuss assumptions and results of employed numerical models
Plasma-sprayed thermal barrier coatings: numerical study on damage localization and evolution
Thermal barrier coatings (TBCs) are advanced material systems used to enhance performance and in-service life of components operated at high temperatures in gas turbines and other power-generation devices. Because of complexity, numerical methods became important tools both for design of these coatings and for in-service life estimations and optimization. In this contribution, two main features that affect the TBCs’ performance, namely the roughness of the bond coat and the microstructure of the ceramic top coat, are discussed based on Finite Element Method (FEM) and Finite Element Microstructure MEshfree (FEMME) simulations that were used to calculate stresses and assess damage within the coating. Roughness data obtained from plasma-sprayed CoNiCrAlY + YSZ coated samples are supplemented to discuss assumptions and results of employed numerical models
Electrospun ZnO Nanowires as Gas Sensors for Ethanol Detection
ZnO nanowires were produced using an electrospinning method and used in gas sensors for the detection of ethanol at 220 °C. This electrospinning technique allows the direct placement of ZnO nanowires during their synthesis to bridge the sensor electrodes. An excellent sensitivity of nearly 90% was obtained at a low ethanol concentration of 10 ppm, and the rest obtained at higher ethanol concentrations, up to 600 ppm, all equal to or greater than 90%
Modeling of slow transients with Boltzmann method
Un nouveau logiciel CFD, LaBS, basé sur la méthode de lattice Boltzmann sur Réseau a été développé dans le cadre d'un projet entre universités et industries. LaBS est utilisé pour la simulation numérique des écoulements thermiques avec un nouveau modèle de frontière immergée pour les conditions limites thermiques. Ce modèle est basé sur la méthode de reconstruction de la fonction de distribution et est évalué pour des conditions limites coincidentes et non-coincidentes avec le maillage, sur le phénomène de diffusion thermique et de convection naturelle.Renault s'intéresse aux situations d'arrêt péage ou de contact coupé, pour lesquelles sont considérés un véhicule roulant à une vitesse soutenue, sur une autoroute par exemple, et qui subit un arrêt ou un ralentissement brutal (avec ou sans contact coupé).Dans ce genre de situation le refroidissement du compartiment moteur qui était assuré par le phénomène de convection forcé durant le roulage laisse place au phénomène de convection naturelle durant les phases de base vitesse ou de vitesse nulle.Le phénomène de convection naturelle est un phénomène lent, qui peut prendre plusieurs minutes à évacuer la chaleur accumulée dans le compartiment moteur. La présence de température élevée pendant une durée trop importante dans le compartiment moteur peut endommager certains composants qui possèdent des seuils de température critique.Pour anticiper ce problème de surchauffe du compartiment moteur, dans lequel un grand nombre de pièces à géométries complexes sont présentes, le phénomène de convection naturelle est étudié avec le nouveau modèle de frontière immergée thermique.%Ce modèle est d'abord testé sur des cas test académique pour validation et est ensuite appliqué au cas d'une voiture réelle.La modélisation des écoulements thermiques avec la méthodes de lattice Boltzmann sur Réseau (LBM) peut-être classée en trois catégories: l'approche multi-vitesse, l'approche hybride et l'approche à deux fonctions de distribution (DDF: Double-Distribution-Function).L'approche multi-vitesse, utilise une équation pour résoudre le champ de vitesse, de densité et de température qui sont résolus avec la LBM. Tandis que l'approche hybride et l'approche DDF utilise un jeux de deux équations, un pour résoudre le champ de vitesse et de densité et l'autre pour résoudre le champ de température.L'approche hybride résout le champ de vitesse et de densité avec la LBM et utilise une méthode de différence finie ou de volume fini pour résoudre le champ de température. L'approche DDF résout quand à elle les deux équations avec la LBM.Le modèle thermique utilisé dans LaBS est basé sur l'approche DDF où les deux équations sont couplées par l'hypothèse de Boussinesq. Le champ de vitesse et de densité est résolu avec un réseau de dix-neuf vitesses discrètes (D3Q19) et champs de température est résolut soit par un réseau à dix-neuf vitesses discrètes (D3Q19) soit par un réseau à sept vitesses discrètes (D3Q7).Le nouveau modèle de frontière immergée décompose la fonction de distribution aux noeuds frontière en sa partie à l'équilibre et hors équilibre. La partie hors équilibre est calculée à partir d'une formulation théorique issus du développement de Chapman-Enskog.La validation du modèle DDF implémenté dans LaBS est faite sur un ensemble de cas test de complexité croissante. Les résultats obtenus avec LaBS sont comparés aux solutions analytiques ou encore à des articles de référence et sont en accord avec les résultats attendus. Ils montrent que qualitativement les résultats sont aussi bons pour le modèle D3Q19/D3Q19 que pour le modèle D3Q19/D3Q7 mais que quantitativement le modèle D3Q19/D3Q19 reste meilleur.A new three-dimensional CFD solver, LaBS, based on the lattice Boltzmann alogorithms has been developed in a framework of university and industry consortium. In this thesis, this solver is used to simulate thermal flows, with a new thermal boundary condition for immersed solid boundary. The new proposed thermal boundary condition is based on the reconstruction method of the distribution function and is evaluated for immersed solid with coincident and non-coincident wall on the case of diffusion and natural convection phenomena.Renault case study, deals with a vehicle moving at constant speed (highway) that suddently slows down and stops (with or without a cut off contact). In such situation the cooling of the engine compartment first driven by forced convection during taxiing stage, abruptly switches to natural convection in low velocity stages. As natural convection is a slow process, it can take several minutes to remove the accumulated heat in the engine compartment. Such duration could be damaging for some components of the engine compartement which do not tolerate high temperature.In order to anticipate overheating of the engine compartment, where a lot of automotive parts with complex geometry are present and to avoid the above mentioned damages, the phenomenon of natural convection is here studied with the new thermal boundary condition.%The new proposed thermal boundary condition is first tested on academic case studies for validation, and then applied to the case of a real car.The modelling of thermal flows with the lattice Boltzmann method (LBM) can be classified into three categories: the multispeed approach, the hybrid approach and the double-distribution-function (DDF) approach. The multispeed approach, uses only one equation to resolve velocity, density and temperature field, which is solved by the LBM. Whereas the hybrid approach and the DDF approach utilize two sets of equations, one to resolve velocity field and density field and another to resolve temperature field. The hybrid approach solves velocity field and density field by the LBM method and the temperature field by finite-different or finite-volume methods. On the other hand the DDF approach solves the two equations with LBM.The thermal model used in the solver LaBS is based on the coupled DDF approach. In this model, the flow field is solved by a D3Q19 velocity model while the temperature field is solved by a D3Q19 or a D3Q7 velocity model. The coupling between the momentum and the energy transport is made by the boussinesq approximation. The new proposed thermal boundary condition decomposes the distribution function at the boundary node into its equilibrium and non-equilibrium part. The non-equilibrium part is calculated from the theoretical solution based on Chapman-Enskog developement.LaBS thermal model based on the coupled DDF approach is evaluated on a set of cases with increasing complexity. The results obtained with LaBS are compared with analytical solutions or with reference articles and are in a good agreement with the results expected. Results show that the model D3Q19/D3Q7 is qualitatively as good as the model D3Q19/D3Q19 but quantitatively the model D3Q19/D3Q19 remains the best
Modélisation des phénoménes transitoire lents avec la méthode de Boltzmann sur réseau
A new three-dimensional CFD solver, LaBS, based on the lattice Boltzmann alogorithms has been developed in a framework of university and industry consortium. In this thesis, this solver is used to simulate thermal flows, with a new thermal boundary condition for immersed solid boundary. The new proposed thermal boundary condition is based on the reconstruction method of the distribution function and is evaluated for immersed solid with coincident and non-coincident wall on the case of diffusion and natural convection phenomena.Renault case study, deals with a vehicle moving at constant speed (highway) that suddently slows down and stops (with or without a cut off contact). In such situation the cooling of the engine compartment first driven by forced convection during taxiing stage, abruptly switches to natural convection in low velocity stages. As natural convection is a slow process, it can take several minutes to remove the accumulated heat in the engine compartment. Such duration could be damaging for some components of the engine compartement which do not tolerate high temperature.In order to anticipate overheating of the engine compartment, where a lot of automotive parts with complex geometry are present and to avoid the above mentioned damages, the phenomenon of natural convection is here studied with the new thermal boundary condition.%The new proposed thermal boundary condition is first tested on academic case studies for validation, and then applied to the case of a real car.The modelling of thermal flows with the lattice Boltzmann method (LBM) can be classified into three categories: the multispeed approach, the hybrid approach and the double-distribution-function (DDF) approach. The multispeed approach, uses only one equation to resolve velocity, density and temperature field, which is solved by the LBM. Whereas the hybrid approach and the DDF approach utilize two sets of equations, one to resolve velocity field and density field and another to resolve temperature field. The hybrid approach solves velocity field and density field by the LBM method and the temperature field by finite-different or finite-volume methods. On the other hand the DDF approach solves the two equations with LBM.The thermal model used in the solver LaBS is based on the coupled DDF approach. In this model, the flow field is solved by a D3Q19 velocity model while the temperature field is solved by a D3Q19 or a D3Q7 velocity model. The coupling between the momentum and the energy transport is made by the boussinesq approximation. The new proposed thermal boundary condition decomposes the distribution function at the boundary node into its equilibrium and non-equilibrium part. The non-equilibrium part is calculated from the theoretical solution based on Chapman-Enskog developement.LaBS thermal model based on the coupled DDF approach is evaluated on a set of cases with increasing complexity. The results obtained with LaBS are compared with analytical solutions or with reference articles and are in a good agreement with the results expected. Results show that the model D3Q19/D3Q7 is qualitatively as good as the model D3Q19/D3Q19 but quantitatively the model D3Q19/D3Q19 remains the best.Un nouveau logiciel CFD, LaBS, basé sur la méthode de lattice Boltzmann sur Réseau a été développé dans le cadre d'un projet entre universités et industries. LaBS est utilisé pour la simulation numérique des écoulements thermiques avec un nouveau modèle de frontière immergée pour les conditions limites thermiques. Ce modèle est basé sur la méthode de reconstruction de la fonction de distribution et est évalué pour des conditions limites coincidentes et non-coincidentes avec le maillage, sur le phénomène de diffusion thermique et de convection naturelle.Renault s'intéresse aux situations d'arrêt péage ou de contact coupé, pour lesquelles sont considérés un véhicule roulant à une vitesse soutenue, sur une autoroute par exemple, et qui subit un arrêt ou un ralentissement brutal (avec ou sans contact coupé).Dans ce genre de situation le refroidissement du compartiment moteur qui était assuré par le phénomène de convection forcé durant le roulage laisse place au phénomène de convection naturelle durant les phases de base vitesse ou de vitesse nulle.Le phénomène de convection naturelle est un phénomène lent, qui peut prendre plusieurs minutes à évacuer la chaleur accumulée dans le compartiment moteur. La présence de température élevée pendant une durée trop importante dans le compartiment moteur peut endommager certains composants qui possèdent des seuils de température critique.Pour anticiper ce problème de surchauffe du compartiment moteur, dans lequel un grand nombre de pièces à géométries complexes sont présentes, le phénomène de convection naturelle est étudié avec le nouveau modèle de frontière immergée thermique.%Ce modèle est d'abord testé sur des cas test académique pour validation et est ensuite appliqué au cas d'une voiture réelle.La modélisation des écoulements thermiques avec la méthodes de lattice Boltzmann sur Réseau (LBM) peut-être classée en trois catégories: l'approche multi-vitesse, l'approche hybride et l'approche à deux fonctions de distribution (DDF: Double-Distribution-Function).L'approche multi-vitesse, utilise une équation pour résoudre le champ de vitesse, de densité et de température qui sont résolus avec la LBM. Tandis que l'approche hybride et l'approche DDF utilise un jeux de deux équations, un pour résoudre le champ de vitesse et de densité et l'autre pour résoudre le champ de température.L'approche hybride résout le champ de vitesse et de densité avec la LBM et utilise une méthode de différence finie ou de volume fini pour résoudre le champ de température. L'approche DDF résout quand à elle les deux équations avec la LBM.Le modèle thermique utilisé dans LaBS est basé sur l'approche DDF où les deux équations sont couplées par l'hypothèse de Boussinesq. Le champ de vitesse et de densité est résolu avec un réseau de dix-neuf vitesses discrètes (D3Q19) et champs de température est résolut soit par un réseau à dix-neuf vitesses discrètes (D3Q19) soit par un réseau à sept vitesses discrètes (D3Q7).Le nouveau modèle de frontière immergée décompose la fonction de distribution aux noeuds frontière en sa partie à l'équilibre et hors équilibre. La partie hors équilibre est calculée à partir d'une formulation théorique issus du développement de Chapman-Enskog.La validation du modèle DDF implémenté dans LaBS est faite sur un ensemble de cas test de complexité croissante. Les résultats obtenus avec LaBS sont comparés aux solutions analytiques ou encore à des articles de référence et sont en accord avec les résultats attendus. Ils montrent que qualitativement les résultats sont aussi bons pour le modèle D3Q19/D3Q19 que pour le modèle D3Q19/D3Q7 mais que quantitativement le modèle D3Q19/D3Q19 reste meilleur
Thermal and Flame Retardant Behavior of Neem and Banyan Fibers When Reinforced with a Bran Particulate Epoxy Hybrid Composite
Awareness of environmental concerns influences researchers to develop an alternative method of developing natural fiber composite materials, to reduce the consumption of synthetic fibers. This research attempted testing the neem (Azadirachta indica) fiber and the banyan (Ficus benghalensis) fiber at different weight fractions, under flame retardant and thermal testing, in the interest of manufacturing efficient products and parts in real-time applications. The hybrid composite consists of 25% fiber reinforcement, 70% matrix material, and 5% bran filler. Their thermal properties—short-term heat deflection, temperature, thermal conductivity, and thermal expansion—were used to quantify the effect of potential epoxy composites. Although natural composite materials are widely utilized, their uses are limited since many of them are combustible. As a result, there has been a lot of focus on making them flame resistant. The thermal analysis revealed the sample B was given 26% more short-term heat resistance when the presence of banyan fiber loading is maximum. The maximum heat deflection temperature occurred in sample A (104.5 °C) and sample B (99.2 °C), which shows a 36% greater thermal expansion compared with chopped neem fiber loading. In sample F, an increased chopped neem fiber weight fraction gave a 40% higher thermal conductivity, when compared to increasing the bidirectional banyan mat of this hybrid composite. The maximum flame retardant capacity occurred in samples A and B, with endurance up to 12.9 and 11.8 min during the flame test of the hybrid composites
Wykorzystanie popiołu dennego ze spalania węgla brunatnego jako kruszywa drobnego do betonu
Concrete is generally produced using materials such as crushed stone and river sand to the extent of about 80-90% combined with cement and water. These materials are quarried from natural sources. Their depletion will cause strain on the environment. To prevent this, bottom ash produced at thermal power plants by burning of coal has been utilized in this investigation into making concrete. The experimental investigation presents the development of concrete containing lignite coal bottom ash as fine aggregate in various percentages of 25, 50, and 100. Compressive, split tensile, and flexural strength as part of mechanical properties; acid, sulphate attack, and sustainability under elevated temperature as part of durability properties, were determined. These properties were compared with that of normal concrete. It was concluded from this investigation that bottom ash to an extent of 25% can be substituted in place of river sand in the production of concrete.Beton jest popularnym materiałem budowlanym przygotowywanym przy użyciu lokalnie dostępnych materiałów, takich jak tłuczeń kamienny, piasek i woda. Cement natomiast jest fabrycznie produkowanym składnikiem łączącym wszystkie te materiały. Materiały są dostosowane do wymagań, dobrze wymieszane i umieszczone w formie szalunkowej. Po około 18 do 24 godzin, usuwa się formę szalunkową, a beton pozostawia się do stwardnienia, jednocześnie pielęgnując go poprzez polewanie wodą przez około 28 dni lub aż do dnia badania. W miarę wydobywania tłucznia kamiennego oraz piasku z naturalnych źródeł, wykorzystywanie tych materiałów na dużą skalę nie tylko wyczerpuje źródła, ale również negatywnie wpływa na środowisko. Zbadanie alternatyw dla tych materiałów okazuje się być tym bardziej konieczne. Obecnie działalność człowieka generuje duże ilości odpadów przemysłowych, rolniczych, itp. Jednym z takich odpadów przemysłowych jest popiół denny otrzymywany z elektrowni cieplnych po spalaniu węgla w procesie wytwarzania energii elektrycznej. Struktura popiołu dennego uznaje się za podobną do piasku rzecznego, używanego jako drobne kruszywo do wytwarzaniu betonu. Charakterystyka popiołu dennego nie wszędzie wygląda tak samo, ponieważ właściwości węgla również zmieniają się w zależności od miejsca. Popiół denny z węgla brunatnego uzyskano z elektrociepłowni Neyveli Thermal Power Plant w Indiach i wykorzystano w badaniu eksperymentalnym, jako drobne kruszywo do przygotowania betonu. Popiół denny został użyty w celu zastąpienia piasku rzecznego według wskaźnika 25%, 50% i 100%. Określono właściwości fizyczne i chemiczne popiołu dennego
- …