4 research outputs found

    Ameliorating effect of olive oil on fertility of male rats fed on genetically modified soya bean

    No full text
    Background: Genetically modified soya bean (GMSB) is a commercialized food. It has been shown to have adverse effects on fertility in animal trials. Extra virgin olive oil (EVOO) has many beneficial effects including anti-oxidant properties. The aim of this study is to elucidate if addition of EVOO ameliorates the adverse effects on reproductive organs of rats fed on GMSB containing diet. Methods: Forty adult male albino rats (150–180 g) of Sprague Dawley strain were separated into four groups of 10 rats each: Group 1 – control group fed on basal ration, Group 2 – fed on basal ration mixed with EVOO (30%), Group 3 – fed on basal ration mixed with GMSB (15%), and Group 4 – fed on basal ration mixed with GMSB (15%) and EVOO (30%). This feeding regimen was administered for 65 days. Blood samples were collected to analyze serum zinc, vitamin E, and testosterone levels. Histopathological and weight changes in sex organs were evaluated. Results: GMSB diet reduced weight of testis (0.66±0.06 vs. 1.7±0.06, p<0.001), epididymis (0.489±0.03 vs. 0.7±0.03, p<0.001), prostate (0.04±0.009 vs. 0.68±0.04, p<0.001), and seminal vesicles (0.057±0.01 vs. 0.8±0.04, p<0.001). GMSB diet adversely affected sperm count (406±7.1 vs. 610±7.8, p<0.001), motility (p<0.001), and abnormality (p<0.001). GMSB diet also reduced serum zinc (p<0.05), vitamin E (p<0.05), and testosterone (p<0.05) concentrations. EVOO diet had no detrimental effect. Addition of EVOO to GMSB diet increased the serum zinc (p<0.05), vitamin E (p<0.05), and testosterone (p<0.05) levels and also restored the weights of testis (1.35±0.16 vs. 0.66±0.06, p<0.01), epididymis (0.614±0.13 vs. 0.489±0.03, p<0.001), prostate (0.291±0.09 vs. 0.04±0.009, p<0.001), seminal vesicle (0.516±0.18 vs. 0.057±0.01, p<0.001) along with sperm count (516±3.1 vs. 406±7.1, p<0.01), motility (p<0.01), and abnormality (p<0.05). Conclusion: EVOO ameliorates the adverse effects of GMSB on reproductive organs in adult male albino rats. This protective action of EVOO justifies its use against the oxidative damage induced by GMSB in reproductive organs

    The Effect of Extra Virgin Olive Oil and Soybean on DNA, Cytogenicity and Some Antioxidant Enzymes in Rats

    No full text
    We investigated the effect of extra virgin (EV) olive oil and genetically modified (GM) soybean on DNA, cytogenicity and some antioxidant enzymes in rodents. Forty adult male albino rats were used in this study and divided into four groups. The control group of rodents was fed basal ration only. The second group was given basal ration mixed with EV olive oil (30%). The third group was fed basal ration mixed with GM (15%), and the fourth group survived on a combination of EV olive oil, GM and the basal ration for 65 consecutive days. On day 65, blood samples were collected from each rat for antioxidant enzyme analysis. In the group fed on basal ration mixed with GM soyabean (15%), there was a significant increase in serum level of lipid peroxidation, while glutathione transferase decreased significantly. Interestingly, GM soyabean increased not only the percentage of micronucleated polychromatic erythrocytes (MPCE), but also the ratio of polychromatic erythrocytes to normochromatic erythrocytes (PEC/NEC); however, the amount of DNA and NCE were significantly decreased. Importantly, the combination of EV olive oil and GM soyabean significantly altered the tested parameters towards normal levels. This may suggest an important role for EV olive oil on rodents’ organs and warrants further investigation in humans

    Ameliorating effect of olive oil on fertility of male rats fed on genetically modified soya bean

    No full text
    Background: Genetically modified soya bean (GMSB) is a commercialized food. It has been shown to have adverse effects on fertility in animal trials. Extra virgin olive oil (EVOO) has many beneficial effects including anti-oxidant properties. The aim of this study is to elucidate if addition of EVOO ameliorates the adverse effects on reproductive organs of rats fed on GMSB containing diet. Methods: Forty adult male albino rats (150–180 g) of Sprague Dawley strain were separated into four groups of 10 rats each: Group 1 – control group fed on basal ration, Group 2 – fed on basal ration mixed with EVOO (30%), Group 3 – fed on basal ration mixed with GMSB (15%), and Group 4 – fed on basal ration mixed with GMSB (15%) and EVOO (30%). This feeding regimen was administered for 65 days. Blood samples were collected to analyze serum zinc, vitamin E, and testosterone levels. Histopathological and weight changes in sex organs were evaluated. Results: GMSB diet reduced weight of testis (0.66±0.06 vs. 1.7±0.06, p<0.001), epididymis (0.489±0.03 vs. 0.7±0.03, p<0.001), prostate (0.04±0.009 vs. 0.68±0.04, p<0.001), and seminal vesicles (0.057±0.01 vs. 0.8±0.04, p<0.001). GMSB diet adversely affected sperm count (406±7.1 vs. 610±7.8, p<0.001), motility (p<0.001), and abnormality (p<0.001). GMSB diet also reduced serum zinc (p<0.05), vitamin E (p<0.05), and testosterone (p<0.05) concentrations. EVOO diet had no detrimental effect. Addition of EVOO to GMSB diet increased the serum zinc (p<0.05), vitamin E (p<0.05), and testosterone (p<0.05) levels and also restored the weights of testis (1.35±0.16 vs. 0.66±0.06, p<0.01), epididymis (0.614±0.13 vs. 0.489±0.03, p<0.001), prostate (0.291±0.09 vs. 0.04±0.009, p<0.001), seminal vesicle (0.516±0.18 vs. 0.057±0.01, p<0.001) along with sperm count (516±3.1 vs. 406±7.1, p<0.01), motility (p<0.01), and abnormality (p<0.05). Conclusion: EVOO ameliorates the adverse effects of GMSB on reproductive organs in adult male albino rats. This protective action of EVOO justifies its use against the oxidative damage induced by GMSB in reproductive organs
    corecore