930 research outputs found

    The impact of ranking systems on higher education and its stakeholders

    Get PDF
    Abstract The arrival of university ranking has changed the landscape of higher education all over the world and is likely to continue to influence further development nationally and internationally. This article provides an overview of rankings systems in which Australian universities feature and it goes on further to discuss the impact ranking systems have on higher education and its stakeholders. It concludes by acknowledging that ranking systems are viewed differently by different stakeholders and hence affect them in different ways. While no one ranking can be accepted as definitive, these ranking systems will remain a part of the higher education system for some time to come. Keywords: University rankings; league tables; higher education; stakeholders There is a new era in higher education, characterised by global competition, in which university ranking systems have assumed an importance. Their emergence, often controversial and subject to considerable debate, has been met with a lot of scepticism, some enthusiasm and an institutional unease. Regardless, ranking systems are here to stay and it is important to assess their effect on the higher education sector and its stakeholders

    FRONTIER QUALITY DIFFERENTIALS IN HYBRID HIGHER EDUCATION

    Get PDF
    “Research capacity has large influence on a nation's competitiveness and its economic strength. Institutions can make a significant difference in the research productivity of their faculty Indeed, research shows that institutional affiliation is an important predictor of productivity over time. What this suggests is that effective scholars thrive in a certain kind of academic "ecology." The purpose of this paper is to describe several key features of this environment and to pay special attention to what will be required to cultivate the next generation of researchers.”

    FRONTIER QUALITY DIFFERENTIALS IN HYBRID HIGHER EDUCATION

    Get PDF
    “Research capacity has large influence on a nation's competitiveness and its economic strength. Institutions can make a significant difference in the research productivity of their faculty Indeed, research shows that institutional affiliation is an important predictor of productivity over time. What this suggests is that effective scholars thrive in a certain kind of academic "ecology." The purpose of this paper is to describe several key features of this environment and to pay special attention to what will be required to cultivate the next generation of researchers.”

    Synthesis and characterization of jellified composites form bovine bone-derived hydroxyapatite and starch as precursors for robocasting

    Get PDF
    Hydroxyapatite–starch composites solidify rapidly via jellification, making them suitable candidates for robocasting. However, many aspects related to hydroxyapatite powder characteristics, hydroxyapatite–starch interaction, and composites composition and properties need to be aligned with robocasting requirements to achieve a notable improvement in the functionality of printed scaffolds intended for bone regeneration. This article presents a preliminary evaluation of hydroxyapatite–starch microcomposites. Thermal analysis of the starting powders was performed for predicting composites’ behavior during heat-induced densification. Also, morphology, mechanical properties, and hydroxyapatite–starch interaction were evaluated for the jellified composites and the porous bodies obtained after conventional sintering, for different starch additions, and for ceramic particle size distributions. The results indicate that starch could be used for hydroxyapatite consolidation in limited quantities, whereas the composites shall be processed under controlled temperature. Due to a different mechanical behavior induced by particle size and geometry, a wide particle size distribution of hydroxyapatite powder is recommended for further robocasting ink development

    The workplace: What does employability mean for science and mathematics graduates?

    Get PDF
    Background It is imperative that science and mathematics graduates are prepared for work and employment by having the appropriate skills and knowledge for the sector in which they find work. This encompasses both discipline specific skills and generic skills. Many employers place significant emphasis on the latter, whereas the focus of universities is arguably the inverse. As a consequence there are significant gaps between what employers expect graduates to know and to be able to do, and their actual graduate attributes. For the growing number of graduates who create their own work and juggle multiple roles to make it sustainable, the gaps are even more pronounced. These issues are magnified in science and mathematics as the graduate destinations are highly diverse, often with a lack of obvious career paths and intense competition for work. Aims The aim of this paper is to inform the audience about the current findings of the OLT Strategic Priority Project ‘How universities can best support students to develop generic skills: Enacting strategies for graduate employability’. This project has a focus on life sciences and computer science and is relevant to other sciences and mathematics. Methodology & Conclusions This paper focuses on science graduates proceeding to career pathways other than research science, to illustrate what knowledge, skills and attributes graduates need to negotiate the world of work and their perceptions of whether or not these were developed during their higher education studies. The paper reports on the development of a framework for employability skills development, including best practice in employability skills education and our learning from the review of manifold prior work on employability, generic skills and the labour market; case studies of students in transition from study into work; and retrospective studies on graduates who have been in the workforce sufficiently long to meaningfully reflect on their transition experiences. This project is supported by the Australian Government Office for Learning & Teaching

    Production of He-4 and (4) in Pb-Pb collisions at root(NN)-N-S=2.76 TeV at the LHC

    Get PDF
    Results on the production of He-4 and (4) nuclei in Pb-Pb collisions at root(NN)-N-S = 2.76 TeV in the rapidity range vertical bar y vertical bar <1, using the ALICE detector, are presented in this paper. The rapidity densities corresponding to 0-10% central events are found to be dN/dy4(He) = (0.8 +/- 0.4 (stat) +/- 0.3 (syst)) x 10(-6) and dN/dy4 = (1.1 +/- 0.4 (stat) +/- 0.2 (syst)) x 10(-6), respectively. This is in agreement with the statistical thermal model expectation assuming the same chemical freeze-out temperature (T-chem = 156 MeV) as for light hadrons. The measured ratio of (4)/He-4 is 1.4 +/- 0.8 (stat) +/- 0.5 (syst). (C) 2018 Published by Elsevier B.V.Peer reviewe

    Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
    corecore