10 research outputs found
Metabolic rate and substrate utilisation resilience in men undertaking polar expeditionary travel.
The energy expenditure and substrate utilisation were measured in 5 men pre- and post- a 67 day, 1750km unassisted Antarctic traverse from the Hercules Inlet to the Ross Sea Ice via the South pole pulling sledges weighing 120kg whilst experiencing temperatures as low as -57°C. A 36-hours protocol in a whole body calorimeter was employed to measure periods of rest, sleep and three periods of standardised stepping exercises at 80, 100 and 120 steps min-1; participants were fed isocalorically. Unlike previous expeditions where large weight loss was reported, only a modest loss of body weight (7%, P = 0.03) was found; fat tissue was reduced by 53% (P = 0.03) together with a small, but not statistically significant, increase in lean tissue weight (P = 0.18). This loss occurred despite a high-energy intake (6500 kcal/day) designed to match energy expenditure. An energy balance analysis suggested the loss in body weight could be due to the energy requirements of thermoregulation. Differences in energy expenditure [4.9 (0.1) vs 4.5 (0.1) kcal/min. P = 0.03], carbohydrate utilisation [450 (180) vs 569 (195) g/day; P = 0.03] and lipid utilisation [450 (61) vs 388 (127) g/day, P = 0.03] at low levels of exertion were different from pre-expedition values. Only carbohydrate utilisation remained statistically significant when normalised to body weight. The differences in energy expenditure and substrate utilisation between the pre- and post-expedition for other physiological states (sleeping, resting, higher levels of exercise, etc) were small and not statistically significant. Whilst inter-subject variability was large, there was a tendency for increased carbohydrate utilisation, post-expedition, when fasted that decreased upon feeding
Multivariate analyses of individual variation in soccer skill as a tool for talent identification and development: utilising evolutionary theory in sports science
The development of a comprehensive protocol for quantifying soccer-specific skill could markedly improve both talent identification and development. Surprisingly, most protocols for talent identification in soccer still focus on the more generic athletic attributes of team sports, such as speed, strength, agility and endurance, rather than on a player's technical skills. We used a multivariate methodology borrowed from evolutionary analyses of adaptation to develop our quantitative assessment of individual soccer-specific skill. We tested the performance of 40 individual academy-level players in eight different soccer-specific tasks across an age range of 13-18years old. We first quantified the repeatability of each skill performance then explored the effects of age on soccer-specific skill, correlations between each of the pairs of skill tasks independent of age, and finally developed an individual metric of overall skill performance that could be easily used by coaches. All of our measured traits were highly repeatable when assessed over a short period and we found that an individual's overall skill - as well as their performance in their best task - was strongly positively correlated with age. Most importantly, our study established a simple but comprehensive methodology for assessing skill performance in soccer players, thus allowing coaches to rapidly assess the relative abilities of their players, identify promising youths and work on eliminating skill deficits in players